THE FISHES OF OKANAGAN LAKE AND NEARBY WATERS

By W. A. Clemens

In the study of the fishes of the lakes, collections were made by means of a gang of seven gill nets of $1 \frac{1}{4}, 1 \frac{1}{2}, 2,2 \frac{1}{2}, 3,4$ and 5 -inch stretched mesh, each 50 yards in length. This string was set 40 times in various localities at depths from 9 to 375 feet (3 to 115 metres). Numerous seine hauls were made with a thirtyfoot quarter-inch net and a ninety-foot half-inch net. In addition specimens of Kamloops trout were provided by a number of anglers, particularly by Mr. J. C. Child, and of kokanee by Mr. G. N. Gartrell and Mr. R. Leckie-Ewing.

The following fourteen species of fish were obtained:
Rocky Mountain whitefish... Prosopium williamsoni (Girard)
Eastern whitefish........... Coregonus clupeaformis (Mitchill)
Kokanee.................... Oncorhynchus nerka kennerlyi (Suckley)
Kamloops trout. Salmo gairdneri kamloops (Jordan)
Fine-scaled sucker.......... Catostomus calostomus (Forster)
Coarse-scaled sucker Calostomus macrocheilus Girard
Carp....................... . Cyprinus carpio Linnaeus
Lake shiner. Richardsonius balleatus (Richardson)
Squawfish.................. Ptychocheilus oregonensis (Richardson)
Chub...................... Mylocheilus caurinus (Richardson)
Long-nosed dace Rhinichthys calaraclae (Cuvier \& Valenciennes)
Silver-grey minnow Apocope falcata (Eigenmann and Eigenmann)
Sculpin...................... Cottus asper Richardson
Ling. Lota maculosa (Le Sueur)
Reports of the occurrence of a few additional species were received, namely, a species of lamprey, a species of sturgeon and the Eastern speckled trout, Salvelinus fontinalis, which was introduced some years ago into a stream at Kelowna. Three species of Pacific salmon, namely, the sockeye, Oncorhynchus nerka, the spring, O. Ischawytscha, and the coho, O. kisutch, are said to have entered the lake in the early days.

ORIGIN OF THE FISH FAUNA

During the last glacial period there could, of course, have been no fish present in what is now the mainland of British Columbia. With the retreat of the ice and the establishment of drainage streams to the south, many species undoubtedly gradually spread northward. In recent years the carp has come by this route and the large-mouthed black bass has at least reached Osoyoos lake, both species having been brought into the state of Washington waters from Eastern United States. It is probable that the ling and the fine-scaled sucker came from
 fraser ounter sime then arespories common in the Creal Lakes fesion of eastern Canada and aho indisenous across northern Canada inchadine morthem Bribioh (${ }^{(0)}$ umbia.

Fimatly twonpecies have been introdmed directs, the bastem whitefoh and the lintom spectiled trout. The former has established itsilf but there seems to be no widnace that the laller has done so.

DISTRIBUTION AND ABUNDANCE IN THE LAKE

The fish temel to form wo distinct groups in respect to their distribution in the lake, mamely, the shallow-water shoreward species and the open-water species. The former group comprises the coarse-scaled sucker, carp, l, We hiner, squawfish, chub, loms-nowed dace, silver-gray minnow and sculpin; the later group, the finescaled sucker, Rocky Xlountain whitefish, Fistern whitcfish, kokanee, Kambops wout and ling. The two associations are illustrated in figure 7 . 'Jhere is a certain amoum of molapping and there are times when the above segregation is tem-

Figukf. 7. Distribution and food relations of fish in Otanagan lake.
pomaly abomdoned, as, for example, in the early autumn when the whitefish, kokance and lingenter the shallow waters to spawn, and in the spring when the Kamloops bout cnter the streams or shore-waters to spann. The chief food relations of the adule fi-h are shown ley arrows.

Certan-peries are exceedingly abundant, as. Tor example, lake shiners, chub, Gquawish and conic-scaled suckers. Large numbers of the young of these fishes inhabit all the shoreward areas where srow he of aquatic plants occur.

The koknee is probably abundant in the open waters. The summer obserations were embely imadequate for the formation of an opinion as to mumbers but statements by residents as to apawing individuals would seem to indicate a considerable population.

Carp, Rocky Mountain whitefish, Eastern whicfish, k゙amloops trout and coulpins oocur abondanty, the fine-scaled sucker and limg much less so, and the long-nosed dace and silver-gray minnow apparently in rery limited numbers.

LIFE HISTORIES OF THE SPECIES

Kokanee, Oncorhynchus nerka kennerlyi (Suckley)

This lake-locked sockeye salmon occurs in considerable abundance in Okanagan lake. Since it is a fish occupying the open waters at intermediate depths, only a very few specimens were taken in the bottom sets of gill nets. Spawning occurs in the autumn along the shores and in some of the streams. The kokanee mature for the most part at four years and the males develop the red coloration, the hooked snout and the deep body as do the sea-run sockeye. As far as known all individuals die after spawning. The size at maturity varies considerably, ranging for the most part between 8 and 10 inches but in some cases reaching 12 inches or more.

The food consists almost entirely of water-fleas (Cladocera) and copepods of the plankton, with midge larvae and pupae and microscopic diatoms occurring as minor items. The food of 14 individuals taken chiefly in July and October was examined and the occurrences were as follows: copepods 5 ; water-fleas 14 ; midge larvae and pupae 2 ; algae 1.

The chief cladoceran was Daphnia longispina, but Bosmina longispina occurred in abundance. The gill rakers are relatively fine and numerous (about 34) and make possible the use of these small organisms as food.

The kokanee is a very important fish in the food cycle of the lake because it feeds upon plankton and in turn forms a rich food supply for the Kamloops trout. There is no doubt that the abundance of kokanees determines the production of large trout in Okanagan lake and that a population of considerable size should be maintained. That there has been a considerable decrease in abundance in recent years is the opinion of many residents and two remedial measures have been suggested, namely, the prohibition of the taking of kokanee for lood purposes and the introduction of fry from other areas. In 1933 the Department of Fisheries introduced 239,250 and in 1935, 149,200 fry. It may be pointed out that before a sound policy can be developed it is necessary to obtain information concerning: (1) the life-history of the fish, (2) the numbers of kokanee in the lake, and (3) the relation of the numbers of kokanee to the plankton supply on the one hand and to the numbers and size of trout on the other.

Kamloops trout, Salmo gairdneri kamloops (Jordan)

This species is native to the Okanagan area. Prior to the extensive development of irrigation systems, it was probably very abundant in Okanagan lake, where satisfactory conditions for grow th were afforded and where the numerous tributary streams provided excellent spawning grounds. As the development of orchards extended throughout the valley and as more and more water was taken from the streams for irrigation, the streams became less and less suitable for the reprodućtion of trout. While the period of the survey did not cover the spawning and fry period, the summer observations together with the statements of residents provided sufficient evidence to indicate that the majority of the streams could not be relied upon in most seasons to maintain sufficient flow to insure the complete
passage of fry or fingerlings down to the lake. The cxtent of the excapement of the young fish undoubtedly viries greatly with the wetness or dryness or the apring and early summer.

To mect this atherse condition, wo fish cultural procedures have been followed in recont years. The Dominion Deparment of Fisheries has brought lo its Summertand tatchery considerable numbers of ergs obtained chiefly at Penark lake, and liberated the resulting fry at warious points around the lake. At the same time, the mombers of the Kelowna liish and Game Protecive Association have established several large natural rearing ponds with some financial assistance from he Provincial (iame Department. Eggs have been supplied by the Dominion

Degarment of Finhemes from its egr-collecting station at bearer lake and the beruling young fich held in the ponds until the rearling slage when they have heen reteared in the fower portion of Mission creet and directly in the lake.

The recoshe of hberations in recent years are given in table lill. Natural propagation and these introductions from other areas hare probably served 10 m.intain a considerable stock of trout.

The size of this stock is unknown but that it is conselemble is indicated les the ammal catches. In view of all the circumstances, there is every reason 10
believe that the present stock can be maintained, possibly increased by a definite fish cultural policy and the matter will be discussed in a later section of this report.

Only two individuals of Kamloops trout were taken in the gill nets and one fingerling 1.6 inches (3.5 cm .) in a seine haul. Other specimens were supplied through the kind assistance of anglers. The largest specimen measured 31 inches (72.9 cm .) and weighed $14 \frac{1}{2}$ pounds. It was caught in November and had apparently completed its eighth summer. Reports of occasional individuals weighing as high as 36 pounds were received.

Table VIII. Distribution of eggs and fry in okanagan lake

lear of stocking	Species	Eggs or fry	Quantity	Source of supply
1919.	Kamloops trout	Fry	20,000	Gerrard hatchery
1922.	"	Eggs	90,000	Lloyds creek
1922.	"	Eggs	30,000	"
1923.	'،	Eggs	200,000	' ${ }^{\prime}$
1924.	'،	Eyed eggs	75,000	"
1928.	،	Fry	60,000	Penask lake hatchery
1929.	"	Fry	75,000	Summerland hatchery
1929.	"	Fry	10,000	" ${ }^{\text {c }}$
1929.	،	Fry	10,850	" ،
1930..	"	Fry	45,825	" ${ }^{\prime}$
1931.	"	Fry	145,000	" ${ }^{\prime \prime}$
1931.	"	Fry	34,964	" "
1932.	"	Fry	-,000	Summerland lev Perask)
1933.	Kokanee	Fry	239.250	Summerland
1934.	Kamloops trout	Fry	-8,402	Summerland (ex Penask)
1934.	Kokanee	Fry	149,200	Summerland
1935...	Kamloops trout	Fry	234,379	Summerland (ex Penask)

IN OKANAGAN RINER

1923............ Kamloops trout

Eggs $\quad 160,000 \quad$ Lloyds creek
Twenty-eight individuals contained a variety of food organisms. The majority were taken in October and November, 1935, and they had been reeding on terrestrial insects and kokanee. Two specimens taken in August had fed to some extent upon aquatic insects. The details are as follows.
28 fish, 10 to $27 \frac{1}{2} \mathrm{im}$. (22.8 to 66.0 cm .) : fresh water shrimps 1 ; spiders 5 : mally nymphs 2 ; caddis larvae 2 ; midge larvae 5 ; other aquatic insects 4 ; teresIrial insects 17 ; fish 10 ; fish eggs 1 .
In addition, the stomach contents of 11 fish taken from Beaver lake during July and August were examined and the result showed that the chicf food of these was caddis larvae. Kamlongs trout is the only species of fish present in this lake. The details are as follows.
1] fich, 6 to 23_{3}^{3} in. (13.2 to 56.5 cm .) : mayfly myphs 2 ; dragonfy mymphe 2 ; caddis larvae 10; midge larvae 4 ; other aquatic inserns 1 ; 1errentrial insects 4.

The data on mate of growth are shown in figure 8. Six individuals had spent the first year in streams and the remainder, 34 , in the lake. The grow th rates of these two groups have been presented separately and they should be considered as only approximate since such a small number of individuals is involved. The assistance of Dr. C. McC. Mottley in the interpretation of these scales is gratefully acknowledged.

Fine-scaled sucker, Catostomus catostomus (Forster)

This species is also known as the northern or long-nosed sucker. It usually inhabits water of considerable depth and appears to be an associate of the Eastern whitefish when the two species occur in the same body of water. Only three individuals were obtained in gill net settings, one off Summerland at a depth of 200 feet (60 metres) and two off Westside at a depth of approximately 100 feet (30 metres). A few sm,ll specimens were obtained in seine hauls.
 taken oll Westside consisted chiefly of midge larvae with considerable numbers of ostracods, copepods (Cyclops) and water mites in addition.

The material was too limited to attempt to determine the rate of growth of the population of the lake, but the two individuals referred to above appeared to he in their fourth and fifth summers respectively.

The fine-scaled sucher is probably not particularly abundant in Okanagan lake and is probably subject to the same limiting factors that apply to the Eastern whitefish, the chief of which would seem to be a lack of food materials on the lake bottom both in quality and quantity:

Coarse-scaled sucker, Catostomus macrocheilus Girard

This is the common sucker of Okanagan and connected lakes, where it inhabits relatively shallow water, no specimen having been taken below 50 feet (15 m .). It is particularly abundant around the weedy margins of the lake, including bays and backwaters, and in the mouths of streams. The young are exceedingly abundant among the reeds where they feed upon the plant and animal growths on the stems and on the lake bottom. A large size is attained. In Okanagan lake a specimen $18 \frac{1}{8}$ inches (41.6 cm .) was obtained, while lengths of 15 to 17 inches were rather common. In Woods lake a specimen $21_{1}^{\frac{1}{1}}$ inches (49.5 cm .) in length and 3 lb .4 oz . in weight was taken in a shore seine.

The food of wenty-ninc specimens averaging $3_{2}^{?}$ inches (7.4 cm .) in length consisted chiefly of small midge larvae but with considerable numbers of copepods, water-fleas and caddis larvae. The food of larger specimens averaging $10 \frac{1}{2}$ inches (23.5 cm .) was composed of large numbers of crustaceans (ostracods, copepods, water-fleas), midge larvae and other aquatic insects. Molluscs occurred in a few instances. In both small and large individuals, diatoms and other algae occurred in considerable quantities along with detritus (sand. mud, fragments of plants and animals). The following data show the number of stomacis in which each food organism occurred.

21 fish under $5 \frac{1}{2} \mathrm{in}$. (12 cm .) : ostracods 1 ; copepods 5 ; water-fleas 11 ; water mites 1 ; mayfly nymplas 1 ; caddis larvae 11 ; midge larvae 24 ; other aquatic insects 2; algae 6.
22 fish over $5 \frac{1}{2} \mathrm{in}$. (12 cm .) : ostracods 6 ; copepods 10 ; water-fleas 9 ; freshwater shrimps 1 ; water mites 5 ; mayfy nymphs 1 ; caddis larvae 9 ; midge larvae 19; other aquatic insects 5 ; terrestrial insects 2 ; molluscs 4 ; algae 6.
Some idea of the rate of growth has been obtained from an examination of the scales of forty-nine individuals from Okanagan lake. The determination of the annual growth areas in the scales of these fish was very difficult and the data presented should be regarded as tentative and approximate (figure 9). The rates of growth of specimens from Woods and Duck lakes appeared to be essentially similar. One large individual $21 \frac{1}{4}$ inches in length taken in Woods lake was probably about 15 years of age.

Figure 9. Rate of growth of the coarse-scaled sucker in Okanagan lake.
Carp, Cyprinus carpio Linnaeus
The exact date when carp appeared in Okanagan lake in unknown, but Mr. G. N. Gartrell, Fisheries Inspector, states that it was probably in 1917. Mr. Gartrell is also of the opinion that they reached their greatest abundance in the year 1934. Extensive observations during the summer of 1935 indicated that they were not exceedingly abundant anywhere in Okanagan lake. For some reason the young could not be located and only two small individuals were obtained, one, $5 \frac{5}{8}$ inches (13.0 cm .) in length, was taken in the $2^{\prime \prime}$ gill net off Okanagan Mission and another, $1 \frac{1}{2}$ inches (3.2 cm .) in length, was picked up dead in the backwater north of the mouth of Mission creek. Neither were young carp seen or taken in Kalamalka, Woods or Duck lakes in spite of intensive search.

It is quite possible that the history of the carp in Okanagan lake is similat (o) that of introduced species in other areas 13 which there occurs a more or less rapid increase in numbers followed by a subsidence to a certain level controlled be cmirommemblactors. The decline may have been hastened by removal of considerable numbers in taps at the outlet of Okanagan lake and in the stream connectins J mack and 11 onds lakes. In 1934 a trap at the outle of the lake capiured approximately seven tons according to Inspector Cxartrell. The removal of carp in the ()kmakan sub-district by means of traps is given by the Department of Fisheries as follows:

$$
\text { 1932, } 7,081 \text { fish, } 1 \pm \text { tons: } \quad 1933,3,000 \text { fish, } 5 \frac{1}{2} \text { tons. }
$$

1934, 1.114 fish, 2 tons; and in addition the 7 tons mentioned above, making a total of 0 tons.
1935, 3.625 fish, 6.3 tons; $\quad 1930,1,002$ fish, 2 tons.
In the abowe calculations of tons an aremge weight of 3^{3}. pounds is used, being the aretge of 13 fish captured by seme in 1100 ds lake in 1935.
(\quad up a meraging 17 inches in length (range 14 to 20, in.) were taken by seme in Summerland and Westside areas and in the North arm where considerable numbers occurred, and thirteen individuals obtained from Woods lake averaged

The food of fifteen individuals ranging in length from 5_{8}^{5} to $21_{8}^{\frac{3}{8}}$ inches conristed chetly of botwom orsmisms such as crustaceans, larvae and nymphs of aquatic insects, worms, small smails, algac and plant fragments. The number of occurbices of the wious food organisms was as follows: worms (O)ligochaeta) 7 ; ostracods 1.5 . copepods 10 ; water-heas 13 ; freshwater shrimps 7 ; water mites 5 ; mashy nymph 7 ; coddis lamae 7 ; terrestrial insects 5 ; midge lanae 12 ; molluses 11; fishegs: 1 ; algac 11 ; higher plant lissue 1.4 .

In feeding habits and character of food, the carp very closely resembles the comse-scaled sucter. In one instance a few fish eggs occurred and it is not improbable that at certain times the eggs of whitefish, kokanee and other species mat be when Jt is not a fish-cating species and is therefore not a predatory enemb of mont. However, it comsumes very large quantilies of the basic food materials and like other coarse fishes does not appear to be contributing to the conomic porchactivity of the lake.

Whing to the limited number of apecimens examined, the lack of young fish, and the difticuly in interpreting the scales, it is not possible 10 determine accurately the rate of grow th of the carp in Okanagan and nearby lakes. Evamination of the scales shows that the fish 5_{8}^{5} inches in lengh was apparently in its third summer. IVish of 16 inches appeared to be in the cighth summer: fish approximately 18 inclues in the ninth summer; the larger fish probably in their tenth and eleventh summers. If these interprotitions of the scales are correct they indicate a much shower mote of growth than in many other bodies of water, as for example ($a s u s, l$ late, Vew Jork state.
'The reproductive capacity of the carp is very sreat. A specimen 18.? inches (41.5 cm.) in longh contaned appoximately 300.000 eggs.

Lake Shiner Richardsomius bullealus (Richardson)

Of the fishes inhabiting the shatlow waters, the lake shiner is probably the mosc abundant. Large numbers occurred in every area where aquatic plants grew. There was considerable variation in the body form of these minnows, those laken at Summerland being particularly deep and compressed.

The food of inclividuals less than $2 \frac{1}{4}$ inches (4.5 cm .) in length consisted largely of copepods with considerable numbers of water-fleas and midge larvae; other aquatic insects and diatoms occurred to some extent. Individuals $2 \frac{1}{2}$ inches (5 cm .) and over in length fed almost entirely upon insects both aquatic and terrestrial, lut slightly more upon the former. Of the aquatic insects, midge larvae, mayfy nymphs and caddis larvae predominated. The terrestrial insects were represented by i variety of beetles, flies, and Hymenoptera, chiefly ants. The number of occurrences were as follows:
17 fish. 1_{2}^{1} to $2_{1}^{1} \mathrm{in}$. (3.0 to 4.5 cm .) : copepods 11 ; water-fleas 4 ; midge larrae 5 ; other aquatic insects 3 ; algae 3 .
33 fish, 2 ; $104 \frac{1}{2}$ in. (4.5109 .5 cm .) : waler-fleas 5 ; water mites 2 ; mayfy nymphs 4 ; caddis larvae 4 ; oher aquatic insects 10 ; terrestrial insects 17 ; midge larvae 9 ; algae 3.
No information has been obtained as to spawning and no attempt has been made to determine the rate of growth. The largest specimen recorded had a length of $4 \frac{1}{2}$ inches (9.5 cm .).

Xo evidence has been obtained to indicate that this minnow is caten by trout. It ir evident that the distribution of the two species in the lake is such that seldom are they brought logether. Were the situation otherwise the shiner would con-- itute an excellent "forage" fish for the trout, but as it is, onty the squan fish would appear io be in a position to benefit parlicularly from the presence of this abundant lood supply.

Squawfish, Plychocheilus oregonensis (Richardson)
The squawfish is a minnow which reaches a large size and is abundant in Okanagan. Woods and Duck lakes. It inhabits the shoreward waters for the most part and probably for this reason it appeared in the gill nets only occasionally. Only five specimens were laken in this gear in Okmagan lake, as compared with S! of the chub. A set in Woods lake in water thick with the alga A phanizomenon lielded 17 squawfish as compared with 62 chub.

Its food consists largely of various species of fish and it is the chief predator of the shallow water association. During the summer of 1935 sculpins and Rocky Mountain whitefish were the chief fishes eaten but other data from the lake (IInnro and Clemens, "The American merganser in British Columbia and its relulion to the fish population", Biol. Bd. Can. Bull. No. LF, 193') show kokanec, K.imloops trout and minnows as additional food items.

While the squan fish is essentially a fish eater it also feeds to a large exient upon aquatic invertebrates such as freshwater shrimps, crayfish and insects. as well as upon terrestrial insects falling upon the surface of the water. The young
up to about $4 \frac{1}{2}$ inclies feed upon small crustaceans and insects. The following are the data on times of occurrence of the food items.
15 fish less than $4 \frac{1}{2}$ inches: water-fleas 6 ; mayfly nymphs 3 ; caddis larvae 3 ; midge larvae 8 ; other aquatic insects 3 .
23 fish over $4 \frac{1}{2}$ inches: water-fleas 2; freshwater shrimps 1 ; crayfish 2 ; water mites 1 ; mayfly nymphs 7 ; midge larvae 7 ; terrestrial insects 6 ; fish 13.
In figure 10 are presented the rates of growth of Okanagan and Woods lake squaw fish. It would appear that the fish of the latter lake grow somewhat more rapidly and attain a much greater age and size. One individual was obtained in Woods lake which was 18 inches in length (42.5 cm .) and was apparently in its 12 th summer. The majority of the larger squawfish taken in Okanagan lake were from 10 to 12 inches in length and in their seventh summer.

Figure 10. Rates of growth of the squawfish in Okanagan and Woods lakes.
Chub, Mylocheilus caurinus (Richardson)
The shallow shoreward waters, particularly where aquatic vegetation is abundant, are thickly populated with chub. Only the lake shiner would appear to exceed this species in numbers. It was taken more frequently in the gill nets than any other species, which fact may also indicate that it is a very active fish. The latter supposition is supported by the food data which show that larger chub feed to a considerable extent upon terrestrial insects.

The food of the very young fish consists chiefly of water-fleas, but also of copepods, water mites, small midge larvac, small aquatic and terrestrial insects.

The food of the larger fish is made up largely of insects both aquatic and
terrestrial, including mayfly nymphs, caddis larvae, midge larvae on the one hand and various moths, beetles, flies and Hymenoptera on the other. Water-fleas occur frequently and molluscs occasionally. Finally remains of small fishes occurred in four out of 46 digestive tracts examined. In a few cases the fragments were those of sculpins and it is probable that the species was represented in all cases. The following are the occurrences of the various food organisms.
6 fish, $1 \frac{1}{2}$ to 5 in . (3 to 10.5 cm .) : worms 1 ; copepods 3 ; water-fleas 6 ; water mites 2 ; midge larvae 3 ; other aquatic insects 2 ; terrestrial insects 1 ; molluscs 1 ; algae 1.
46 fish, 6 to $9 \frac{3}{4}$ in. (13 to 23 cm .): water-fleas 14, water mites 6 ; mayfly nymphs 26 ; caddis larvae and pupae 10 ; midge larvae and pupae 12; terrestrial insects 24 ; molluscs 7; fish 4.

Figure 11. Rate of growth of the chub in Okanagan and Woods lakes.
The rate of growth is shown in figure 11. Since the Okanagan and Woods lake specimens did not show any significant differences in growth rate the graph is based upon the combined determinations of 69 fish from Okanagan lake and 13 from Woods lake. The largest individual taken measured $9 \frac{3}{4}$ inches (23.0 cm .) and was in its sixth summer.

Lonǵnosed dace, Rhinichthys calaraclae (Cuvier and Valenciennes)

A few small specimens of this minnow were taken in seines, chiefly in the Okanagan Mission area but also at Westside and Okanagan landing. It is readily recognized by the long pointed snout, a narrow black line from the eye to the tip
of the anout amb the interior month. It was bund on the butom at the mouth of Mesion creek and alone the mote or less expesed shores of the lake. The sizes ramsed from approximately 1_{3}^{3} to $1{ }_{s}^{3}$ inches (3.0 to 4.2 cm .).

Silver-grey minnow, Apocope falcata (Vigenmann and Eigemmann)
This species was similar in stze, numbers and distribution to the long-nused dace. It is silvery-gray ingeneral coloration with hack markings over back and anke. One sperimen taken at Okanagan Xission was]! inches (3.3 cm .) in lensth. This mimow and the lons-nosed dace usually inhabit cold and rather awift mountam streams.

Sculpin, Coltus asper Richardson

The sculpin or bullhead seemed to be widely distributect around the shores of (okamam lake as it was almost in ariably taken in the small-meshed shore rene. for the most part the fish were small. The larsest in the seine hauls had alongh of 3 inches (7.7 cm .). One individual caught in a gill net near () kanagan landing measured f_{2} ? inches in lengith. It is interesting 10 note that sculpins occurred in the stomachs of Eastern whitefish, chub and squawfish.

The food of small individuals consisted of copepods, water-fleas and midge lavar. White that of lareer individuals showed a preponderance of midge larvae and other aquatic insects. The occurrences of food orsanisms were as follows.
 larvae 7 .

 hariae!, fish 1.

Ling, Lota maculosa (Le Sueur)
Litte information was obtamed as to the abmandance of ling in Okamagan lake. Two individuals were obtained in the gill net settings, one approximately $22!$ inches (55 cm .) and the other $6!$ inches (15 cm .) in length. A third indivinal wimedrum size was picked up dead along the bank of a stream a short distance from the mouth. Several reports were received of catches of large ling hy anglers. Three small specimens were taken in seine hats as follows: two molividuals $7_{5}^{\frac{1}{5}}$ inches (2.8 cm .) and $1 \mathrm{inch}(2.5 \mathrm{~cm}$.) near the mouth of Xlission

Two specimens examined contaned kokanee in the stomachs and it is prob.htr that the kokanee is the staple diet of the Jing in Okanagn and other lakes in the balley. One individual $22 \frac{1}{2} \mathrm{in}$. (55 cm .) in length contaned a kokance x^{\prime}; 110 . (20 cm .) in length. Tumm and (Clemens (lor. cil.) report the food of a specimen 6! inches in length as consisting of a maxyy nymph and other aqualic msects.

It may not be generally known that the ling is a member of the cod family und in the only representative of the family in fresh water. lourther information conerning its life-history and its place in the conomy of the waters is very desirable.

