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ABSTRACT

R.5. Hooton, B.R. Ward, V.A. Lewynsky, M.G. Lirette and
A.R. Facchin. Age and Growth of Steelhead in Vancouver
Island Populations, 1987. Fisheries Technical
Circular Ne. 77. 39 p.

This report summarizes life history characteristics of
winter and summer runs of wild and hatchery steelhead (since
1952) based on scale analysis. Where possible, annual growth
rates and age structures were summarized for each streanm and
hatchery. To back-calculate lengths from scale measurements, the
natural logarithm of scale radii vs the natural logarithm of body
length for fish > 45 mm to adult size was used in the Fraser-Lee
back-calculation procedure. Separate regression equations were
calculated in systems with sufficient data, and for wild and
hatchery fish.

Condition factors were highest for wild winter runs,

followed by hatchery winter runs, then wild summer runs. wild
winter run fish were mainly 2.2, most wild summer runs were 2.3
and 3.3 at spawning. Winter runs had a higher incidence of

repeat spawning. Repeat spawning was higher among females than
males.

Mean back-calculated length at smolting for 6
individual river systems ranged from 173 to 185 mm. Mean
back-calculated smolt lengths from systems where separate
regressions were not available ranged 132 mm (Nimpkish River) to
177 mm (Little Qualicum River).

Back-calculated smolt length increased with freshwater
age, and adult length increased with ocean age. Larger smolts
tend to have an earlier age-at-return. Back-calculated smolt and
ocean age sizes indicated variation in marine growth from 1952 to
1982, mainly evident in the growth from smolting to sea age 1 and
from sea age 1 to sea age 2.

Recommendations for aging and back-calculation
procedures are included with a discussion of limitations to scale
analyses.
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INTRODUCTION

General life history characteristics of most Vancouvéfiﬁ

Island steelhead trout (Salmo gairdneri) populations are thought
to be well known, but  age ~and growth data have only been
reported for a small number of populations (Nanaimo River, Narver
and Withler 1974; Nahmint River, Narver 1974; Ssomass River,
Horncastle 1981), Life history data for each wild stock help to
manage the numerous steelhead fisheries on Vancouver Island.
Because forest harvesting, commercial interception, habitat loss
and angler use can adversely affect steelhead population
structure, the design of appropriate stream-specific habitat
protection guidelines and angling regulations reguires knowledge
of age and growth structure for each population,.

This report presents an initial summary of life history
characteristics based on scales collected from 16 Vancouver
Island drainages since 1952, Where sufficient sample sizes were
obtained, annual growth rates and age structure were summarized
for each stock.

With increased hatchery production, a major objective
was also to describe the life history characteristics of hatchery
fish subsequent to their release as smolts.

METHODS
STUDY AREA

Steelhead were collected from drainages (and
hatcheries) throughout Vancouver Island (Fig. 1; Table 1).
Vancouver Island streams are relatively short and have steep
gradients. Discharge 1is highly responsive to rainfall. Other
anadromous salmonid species common to most Vancouver Island
streams include: cocho (Oncorhynchus kisutch), and chum (0. keta)
salmon, cutthroat trout (8almo ¢larki) and Dolly Varden char
(Salvelinus malma). Sockeye (0. nerka), pink (0. gorbuscha) and
chinook salmon (0. tshawytscha) occur in some drainages.

Adult steelhead were sampled opportunistically from
angler catch beginning in 1952. A more systematic approach was
used to sample both juveniles and adults from 1975 through 1984.

Adult steelhead were sampled from anglers when
encountered by MOE staff and during creel surveys, or collected
by weirs, seines or gill nets (Table 1). Juveniles were obtained
from either weirs, seines, electrofishing or minnow traps, or
dip-netted at hatchery ponds. Fork lengths (mm), weight (g), sex
(of adults) and scales were obtained for most specimens. Scales
were taken from either side of the body three to eight rows above
the lateral line between the dorsal and adipose fins, and stored
in paper envelopes.



and winter run populations. Sex ratios could not be estimated
accurately from anglers’ catch since anglers tend to creel
females more frequently.

RESULTS AND DISCUSSION

CIRCULI COUNTS ON JUVENILE SCALES .

Average circuli counts for smolts were highest between
the first and second annuli, but the range of circuli counts did
not differ substantially between annuli (Table 2). In both parr
and smolts, mean counts and range of counts between annuli

decreased with age. circuli spacing was also variable between
annuli of different - age groups. Number of circuli to the
freshwater margin of smolts from the Big Qualicum and

Campbell/Quinsam rivers was highest for the younger smolts
{Table 2). pDifferences in circuli counts, size of the freshwater
zone and spacing between circuli might be attributable to
environmental or stock differences (Major et al. 1972), Dbut
variability in circuli counts between annuli could be the result
of missing an annulus in the scale aging process.

BODY LENGTH AND S5CALE RADIUS RELATIONSHIPS

The relationship between fork length and scale radius
of all 1life stages combined was curvilinear for both wild
(Fig. 2) and hatchery (Fig. 3) steelhead. Logarithmic
transformation of scale radius and body 1length improved the
coefficient of determination (r“) to .98 and .99 from .96 and
98 for wild and hatchery fish, respectively, and stabilized
residuals. 3

Using covariance analysis, several significant
differences were found between both slopes and intercepts in the
regression of ln(scale radius) and 1n(body length). Different .

slopes existed between wild and hatchery stocks (for both summer
and winter run). Different intercepts were found between all
wild stocks except the Big Qualicum and Stamp/Somass. A

comparison of regression lines of Quinsam hatchery £fish to.
Quinsam wild indicated the same slope but different intercepts.
There appears to be justification for using individual intercepts
when sample sizes are large. Howevet, many of the differences in

slopes and intercepts may have been due to sampling design.

The log-log form was used to back-calculate lengths at

age. The transformation in the regression analysis necessitated .

a corresponding transformation in the Fraser-Lee back-calculation |
equation, otherwise the assumptions of proportionality would not
have been met (Ricker 1968). Fish smaller than 45 mm were
excluded from the analysis, since many of the fish sampled below
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this size were within the period of scale development. Although
these small fish would have little influence on the regression
with large sample size in the larger size categories, they may
have significant leverage where fry sample size is large relative
to older fish, even in the log transformed condition. There was
no back-calculation to size of 0+ fish, therefore no need to
include them in regression.

LENGTH AT AGE
Parr and Smolts

River specific regression equations for both wild and
hatchery steelhead were wused to back-calculate lengths for the
Stamp/Somass (including Robertson Creek), Big Qualicum and Salmon
river systems. An equation based on all wild steelhead sampled
was used for the other streams (Table 3).

Mean lengths of wild juvenile steelhead at capture were
consistently higher than mean back-calculated 1lengths for each
pre-smolt age group in the Stamp/Somass (Table 4), Big Qualicum
(Table 5), Gold (Table 6), Salmon (Table 7}, Campbell/Quinsam
(Table 8) and Cowichan (Table 9) drainages; differences were
generally within the limits of seasonal growth.

Mean lengths at each freshwater age back-calculated
from wild adult steelhead declined with each older age group

among all streams (i.e., Lee’s phenomenon: Ricker (1968}), No
similar trend was evident among the lengths back-calculated from
the juveniles (Tables 4 to 10). The absence of Lee’s phenomenon

in the juveniles may be related to higher rates of emigration by
the larger individuals (smolts) of each age group. For example,
since most of the sampling for juveniles occurred during summer
and fall, back-calculated length-at-age was based on steelhead

that did not smolt that year. These fish may be smaller than
those that emigrated, which in turn would also yield smaller
back-calculated lengths-at-age. Lee’s phenomenon among the

adults could be the result of the smaller individuals of each
juvenile age group spending more time in freshwater, or, as
Ricker (1968) suggests, incorrect back-calculation procedure,
non-randem sampling (bias to the larger representatives of
younger ages), or selective natural mortality of the smaller fish
of a given age.

With a few exceptions, mean lengths at freshwater
ages 1 to 3 back-calculated from adults were not different
between the 14 drainages (Fig. 4; Tables 4 to 10). Age 2 and 3
steelhead in the Campbell/Quinsam rivers (Table 8) and age 3
steelhead from the Cowichan River (Table 9) were larger, whereas
back-calculated lengths of age 1 and 2 Nimpkish steelhead
(Table 10) were substantially smaller.



In the Big Qualicum and Quinsam rivers, where
emigrating smolts were sampled, measured smolt lengths were
compared to back-calculated lengths at smolting from returning
adults (Tables 5 and 8). Differences may have resulted from
year class growth variability, smolt trapping bias, the inability
of scale readers to accurately measure the freshwater margin at
smolting on adult scales or inaccurate back-calculation of
size. However, it appeared, for at least the Quinsam River
steelhead, larger smolts experienced higher ocean survival. This
was reflected by the back-calculated lengths of age 2+ (182 mm)
and 3+ (191 mm) calculated from returning adults, compared to the
2+ (169 mm) and 3+ (177 mm) smolts measured at the fish . fence.
Big Qualicum measured smolt lengths were not different from
back-calculated smolt lengths.

°  Smolt lengths increased with age in all drainages
{Tables 4 to 10}. Smolts were consistently larger than parr of
the same age and the difference was largest among the younger age
groups (Tables 4 to 10). Younger smolts apparently grew faster
just prior to smolting than older smolts. This was based on the
freshwater margin increment on scales (i.e., "plus growth" during
the period between annulus formation and time of ocean entry).
By examining freshwater marginal scale increments of emigrating
smolts and returning adults, marginal scale growth was
considerably higher for younger smolt ages of wild steelhead in
both the Big Qualicum and Campbell/Quinsam rivers (Fig. 5).

Back-calculated smolt sizes fell within the range of
those reported by Narver and Withler (1971) from Vancouver Island
streams (mean = 147 mm), but mean size (about 174 mm, all
streams) was higher. Sizes back-calculated from adult scales
were more similar to Chilliwack River smolts {Maher and Larkin
1954), Kispiox River smolts (Whately 1977) and Morice River
smolts (Whately et al. 1978). Caution must be exercised in these
comparisons since the back-calculation procedure differed. Maher
and Larkin (1954) used a log-log transformation, as in this
study, for the scale measurement and body length regression but
they based it on presmolts only. Other studies of back-
calculated steelhead smolt length did not perform this log-log
transformation nor did they base the regression on all life
stages of steelhead (Chapman 1958, Narver 1969, Narver and
withler 1971, Horncastle 1981). However, there remains good
evidence for the smolt length ’'window’ to range from 13 to 25 cm
as indicated from Tables 4 - 10 since hatchery smolts released
both smaller (Wagner et al. 1963) and larger (Partridge 1985}
than this range residualized at high rates.

Adult Steelhead

measured lengths at age of returning adult winter
steelhead were similar to back-calculated lengths in both wild
and hatchery fish (cf., Fig. 6 and 7). This implies that despite
differences in smolt length upon ocean entry, survivors were
ultimately the same size. Relatively higher ocean mortality

o
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during the f£first year has been noted as probably being size-
dependent in chum fry (Healey 1982), coho juveniles (Mathews and
Buckley 1976}, chinook post-smolts (Neilson and Geen 1986) and
sockeye post-smolts (Peterman 1982).

No differences were evident among streams in the mean
lengths at ocean age in either wild or hatchery winter run
steelhead (Table 11}, Size at maturity in Atlantic salmon was
correlated with river length (Schaffer and Elson 1975) but on
Vancouver Island both short (e.g., Amor de Cosmos) and long
(e.g., Nanaimo) streams had similar sized adults. Outside this
geographic area steelhead appear to vary in size at maturity with
latitude (Withler 1966), associated with longer ocean residence
in more northern populations.

For summer runs, Tsitika fish were larger at each ocean
age than their counterparts from the Ash/Stamp, Gold/Heber and
Puntledge rivers (Table 12) but sample sizes were too low to make
valid statistical comparisons. There was no difference between
mean lengths of wild and hatchery steelhead (all streams and
hatcheries combined (Fig. 6; Tables 11 and 12). For the ages
that could be compared, winter runs were consistently larger than
summer runs (Fig. 7; c¢f., Tables 11 and 12). Growth of all
steelhead was most rapid during the first two years at sea
(Fig. 6 and 7).

Adult steelhead exhibited differences in length between
the sexes. Regardless of origin (wild or hatchery) or run
(winter or summer) males were consistently larger than females
(all streams and hatcheries combined) at each ocean age (Fig. 7).
This was also consistent among individual streams (Tables 11
and 12). Differences in length were particularly large between
the oldest ages. This has been reported previously (Withler
1966) and appears to be common in salmonids (Gardner 1876).

Relationship Between Smolt Size and Adult Size

No obvious relationship was evident between the fork
lengths of returning adults and their back-calculated length at
smolting (Fig. 8). On closer examination large smolts appeared
to return more frequently as sea age 1. Size of smolts appeared
to be the same in ocean age 2 and 3 (Fig. 9). Earlier return of
larger smolts was common in Atlantic salmon studies (Gardner
1976, Chadwick et al. 1978) and was recorded in Algea River
investigations (Chapman 1958). Hatchery fish provided further

evidence for smolt size and/or growth rate influencing age at
return (Fig. 9).

OCEAN GROWTH

Variation in marine growth of fish from 1950 to 1981
was tested by anova. Ocean growth was based on differences




among the back-calculated lengths at smolting and sea ages 1,
and 3. Comparisons of mean growth were done using Scheffe
multiple range test (sokal and Rohlf, 1969).

Growth of steelhead in their third ocean year did not
differ between calendar years (Fig. 10). Growth of wild £fish
from sea age 1 to 2 was significantly higher during 1968, 1973
and 1974 {(p < 0.05). Hatchery fish growth during the first and
the second ocean year Wwas consistent in that growth within each

year—-class was simultaneously high or low. Again, a biennial
pattern emerged in the data and even years 1976 and 1978 were

significantly different from the others (p < 0.05, Fig. 10).
Growth of hatchery fish from sea age 2 to 3 was similar from 1976
to 1978 but 1979 growth was significantly higher (p < 0.05).

Factors affecting these differences in marine growth

include sampling bias and sample size, as well as sex, return age

and stock. pifferences Dbetween stocks could not be examined E

accurately with this data set. The Big Qualicum River fish,

having the largest sample size, were used to explore the marine :

growth characteristics of males vs females (jacks were excluded)

and the relationship of marine growth to return age.

Growth from smolting to age 1 was the same in male and

female hatchery fish from the Big Qualicum, but the wild males

experienced greater growth in 1length than the wild females

(p ¢ 0.05). In both wild and hatchery fish, growth in the first
year at sea was highest for those that returned at age 2 vs age 3

(p < 0.05). This implied that either faster growing steelhead {

altered age at maturity or else fish that tended to earlier age
at maturity inherently grew better.

puring the second and third years of ocean residence,
males grew longer than females (p ¢ 0.05). Fish that matured at
age 2 grew less in length during the second year at sea than fish
maturing in the next year {p < 0.05). Presumably the latter was
an effect of preparation for spawning. Males channel less

production into maturity than do females; thus the largest
members of the adult population are males, as are the smallest 5

(jacks).

An important conclusion from the examination of marine
growth was that there was large variability from year to year
which was reflected within each age class. In the past, marine

conditions were assumed to be stable and non-limiting (Parkinson
and Slaney 1975}. Although the growth effects to gurvival and

run size cannot be clearly drawn from this study, managers in the

future may be better able to predict returns on the basis of

marine conditions, given information on smolt production.

¢
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MORPHOMETRIC RELATIONSHIPS

Averagg condition factor was highest for wild wigger

runs (k=4.15%10 ~), lowest for wild summer runs (k=1.33%190 %,
and intermediate for hatchery winter runs (k=1.85*%10" ")
. (Table 13). Weight at length was consistently lower in summer

steelhead for all lengths, whereas no consistent differences were
apparent between wild and hatchery winter runs. Smith (1969)
noted that fat content was much higher in summer run fish whereas
winter run fish had more highly developed gonads upcn river

entry. ¥

ADULT STEELHEAD AGE COMPOSITION AND REPEAT SPAWNING FREQUENCIES

Total age (freshwater and ocean age combined} at first
spawning differed between wild and hatchery, and winter and
summer run steelhead. The most frequent ages at first spawning
were age 4 and 5 for wild winter runs, age 3 for hatchery winter
runs, ages 4 to 6 for wild summer runs, and ages 3 and 4 for
hatchery summer run steelhead (Table 14).

The most freguent age composition for wild winter runs
was two freshwater years and two ocean years (i.e., age 2.2}); 2.3
and 3.2 were also common. Other ages were rare {(Table 15). Most
wild summer runs spent two vyears in freshwater and three at sea
(two winters at sea, then migrating the next summer), but a large
percentage also reared three vyears in streams before smolting
(Table 15). Thus, a larger percentage of wild summer runs spent
one additional year in freshwater and a partial additional vyear
in the marine environment than did winter runs.

Ocean age composition of winter and summer hatchery
steelhead was similar to that of the wild fish runs, but most
hatchery steelhead smolted at age 1 with little evidence of an
additional year of stream residence (Table 16)}.

The vast majority of steelhead sampled, regardless of
origin or run, were returning to spawn for their first time
(Table 15 and 16). Winter runs of both wild and hatchery origin
had a slightly higher incidence of repeat spawning, with the
majority of repeat spawners returning to spawn a second time.
The maximum recorded frequency of spawning was four for winter
runs, and three for summer runs. The repeat spawning frequencies
in Tables 15 and 16 were in close agreement with data presented
by Withler (1966) for lower mainland populations.

Repeat spawning frequency was higher among wild
steelhead than among hatchery steelhead in both winter and summer

runs (Tables 17 and 18). Incidence of repeat spawning was
consistently higher in females than males in all streams (Table
17 and 18). Repeat spawning and high variation in age at return

has been suggested by Saunders and Schom (1985) to safequard
against loss of stocks, minimize in-breeding and increase the
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effective population size in Atlantic salmon. On Vancouver
Island streams steelhead have adapted to a highly wvariable

freshwater habitat by varying age at smolting. This and varied

sea age and multiple spawning insure immigration of at least some
spawners in any given season.

{

LIMITATIONS TO SCALE ANALYSES
Aging of Steelhead

A potential source of error in ageing steelhead py the
scale method is the absence of the first annulus. This may occur
when temperatures during the growing season are unusually low,
spawning occurs late in the season, or steelhead rear in streams
whete productivity is low. 1In this study, age 0+ steelhead as
large as 46 mm were devoid of scales at the time of sampling.
By comparison, size at scale formation is approximately 50 mm in
cutthroat trout (Brown and Bailey 1952) and 60 mm in pink salmon

{Pearson 1966). Additional evidence of incomplete scale
formation at age 1 was the wide range of circuli counts between
the scale focus and the first observed annulus (Table 2). For

example, it is not known how many circuli must be formed before
an age 1 mark can be identified; the formation of only four or
five circuli {(or more?) at the end of the first growing season
would likely be insufficient to form a detectable annulus. Such
occurrences would result in unusually high circuli counts between

the focus and first annulus, as the first observed annulus would f

be the age 2 mark.

Because of the wuncertainty of the scale method, both
annuli and spawning checks should be verified. Scale develop-
ment and the presence of an age 1 annulus could be assessed for
each stream and stock by examining fry sampled between the end of
the first growing season and the early spring of the following
year (for examination procedure see Averett and MacPhee 1971).
Formation of the age 1 annulus could also be examined by
comparison with annuli on saggitae otoliths. Absence of the
first year annulus in otoliths is highly unlikely as McKern and
Horton (1974) found that otoliths appeared in steelhead trout 14
days prior to hatching. Otoliths would also be wuseful to
confirm subsequent annuli and spawning checks. Hatchery
steelhead scale interpretations have generally been <corroborated
through coded wire tagging programs.

Another scale parameter that requires examination 1is
time of annulus formation. Studies to date have implied that
annuli for each age all form at the same period, presumably
during winter/early spring (Horncastle 1981; Narver 1974; Withler
1966). This assumption may not necessarily be reasonable and
should be tested. For example, observed annuli could form at
différent time periods for steelhead rearing in different ocean
regions, and/or adverse conditions that affect growth in streams
could result in scale patterns resembling annuli. 1In addition to

Skl
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mark and recapture and comparisons with otoliths, time of annulus
formation could be examined by comparing mean marginal scale (and
otolith) increments (distal annulus to edge) for each age class
by month. Such a comparison will vield a single pronounced
minima when the annual mark is formed.

Back-calculation of lengths

The proportional method is preferred over the
regression technique of back-calculation (Whitney and cCAirlander
1956, Carlander 1981) because variance is less in back-calculated
lengths. A most important assumption is that the variables fork
length and scale radius are indeed proportional (Ricker 1968),

In this study, the relationship of body length and
scale radius was curved with increasing variance. Variance was
stabilized and, coincidentally, the regression appeared as a
straight line when the variables were transformed.

Errors in back-calculation can develop from a number of
areas. The choice of an intercept value might be critical and in
this study it appears a standard intercept would not have been
acceptable since several significant differences were found
between slopes and intercepts. Error was possible from sampling,
including scaled site on the fish (Scarnecchia 1979),
non-representative samples, differences 1in year classes and
variability in the angle of scale measurement.

Sampling

Although much of the steelhead age and growth
characteristics presented in this report may reflect true past
histories, caution should be exercised when assessing differences
between streams and stocks. Adult steelhead samples in
pParticular may be biased, as they were sampled primarily from
angler catch; by nature of the sport, anglers have a tendency to
creel and exhibit the largest fish captured, The larger fish
tend to be ocean age 3, which may be of different freshwater age
than ocean age 2. “Ocean age 3 fish are predominantly female and
anglers may also tend to creel females to obtain roe.

SUMMARY AND CONCLUSIONS

l. Circuli counts on scales varied between stocks and wvariation
was highest between the first and second annuli possibly as a
result of missing an annulus. This could have resulted in
errors in aging.

2. Back-calculation of length at age involved transformation
(natural 1logarithm) of scale radii and body length
measurements from fish of al}l ages to obtain an intercept in
the relationship of the two variables. The transformation
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linearized the relationship and stabilized the variance. The
Fraser-Lee method was then used to back-calculate.

There was no need to include fish which had not yet developed
scales or those that were within the period of scale
development.

River specific regression equations were used for
back~calculation since some intercept differences were
significant. It was difficult to determine if differences in
backcalculated lengths were real or a result of employing
river specific intercepts. %

Most lengths at freshwater age back-calculated from adults
were similar between drainages. However, Nimpkish fish were
smaller whereas Campbell/Quinsam and Cowichan fish were
larger than the others.

Back-calculated smolt length was larger than measured smolt
length from Quisam but about the same for the Big Qualicum.

Smolt length increased with age and smolts were larger than
parr. Younger smolts showed greater "plus" growth than older
smolts.

Adult length was similar between drainages. Hatchery £fish
were the same size at age as wild fish. The relationship
between smolt size and adult size was poor but smaller adults
(sea age 1) appeared to be associated with large smolts.

Ocean growth varied most during the first and second years at
sea. Biennial patterns were found in both wild
(inconsistent) and hatchery fish growth. QOcean conditions
for steelhead growth do not appear to be constant.

Adult ages were consistent with previous investigations on
Vancouver Island (Narver and Withler 1971) and differed in
few respects to studies elsewhere (Leider et al. 1985).

Summer runs tended to be older in both freshwater and
saltwater years. Wild and hatchery fish were of the same
ocean age.

Repeat spawning frequency was higher among wild fish, greater
in winter runs than summer, and higher in females.

Conclusions drawn from this data remain speculative since the
sampling was often by convenience and biased.
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Table 4. Measured and back-calculated fork lengths {mm) of wild juvenile
{summer and winter runs) and adult steelhead trout winter runs during
freshwater residency in the Ash, Stamp and Somass rivers,
Length at Capture Mean Calculated Length
Age Parr Smolts At End of Year At
Group N Mean 50 N Mean sD 1 2 3 q Smolting
JUVENILES
0+ .0 213 43  13.8
+ .0 260 102 26.1 64
2+ .0 15 140 28.4 60 M4
#+ .0 1 225 86 102 178
Weighted mean 64 114 178
Growth increment 64 50 64 N
ADULTS
1. * 138 1XA
2. * 86 172 180
3, * 73138 185 186
4, * 82 168 198 214 234
Weighted mean 84 163 185 214 182
Growth {ncrement 84 79 22 49

* Ocean years pootled

Table 5. Measured and back-calculated fork Tengths (mm) of wild juvenile and
adult steelhead trout (winter run) during freshwater residency in the
Big Qualicum River.
Length at Capture Mean Calculated Length
Age Al1 Fish Smolts At End of Year At
Group N Mean SD N Mean sp 1 F4 3 4 Smolting
JUVENILES
0+ .0 207 66 20.1
1+ .0 108 130 26.7 32 159 7.7 89
2+ .0 107 180 24.0 106 181 23.3 87 14
3+ .0 15 209 29.9 15 209 29.9 B5 140 180
Heighted mean 179 26.5 B3 141 180
Growth increment 88 53 39
ADULTS
1. * 114 109 162
2. * 53z 84 147 176
3, * 9 79 139 107 198
4, * 2 68 99 143 170 170
Helghted mean 88 146 186 170 177
Growth increment . 88 58 40 (-16)

* Ocean years pooled
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Table 6. Measured and back-calculated fork lengths {mm) of wild juvenile
(summer and winter runs) and adult steelhead trout winter runs during
freshwater residency in the Gold and Heber rivers.

shaian bl i

Lengths at Capture Mean Calculated Length

Age Parr Smolts At End of Year At

Group N Mean 1] N Mean sD T 2 3 [ Smolting
JUVENILES
1+ .0 11 93  20.7 54
2+ .0 148 112 16.4 54 94 g
3+ .0 39 127 25.1 48 88 117
4+ .0 1 139 39 8 111 133
Weighted mean 53 82 116 133
Growth increment ) 53 39 24 17
ADULTS

1. * 1 152 152
2. * 45 91 165 1658
3. 0* 42 81 137 186 186
4, * 1 56 90 132 162 i62
Weighted mean 87 151 18% 162 175
Growth increment 87 64 34 (-23)

* Qcean years pooled

Table 7. Measured and back-catculated fork lengths (mm) of wild juvenile and
adult steelhead trout (winter run) during freshwater residency in the
Salmon Riverd,

Lengths at Capture Mean Catculated Length
Age Parr Smaits At End of Year At
Group . N ean sD . N  Mean SO 1 2 3 4 Smoiting
JUVENILES
0.0 90 63 11.0
1+ .0 126 86 21.1 67
2+ .0 84 118 19.6 66 105
3+ .0 10 157 30.8 2 165 11.3 77 115 149
Weighted mean 69 106 149
Growth increment 62 37 43
ADULTS
1. *
2. * 18 91 149 172
3., * 9 78 127 166 175
4, * .
Weighted mean 8 142 166 173
Growth increment 86 56 24

A ncludes Memekay River
* Ocean years pooled

e

G

S



adult steeThead troyt {winter run) during freshwater residency in the

Campbeli/Quinsam River

Length at Capture Mean Calculated Length

Age All Fish SmoTts At End of Year At
Group M Mean ~SD ¥ TFean 35D 1 2 34 Smolting
JUVENILES
0+.0 244 55.6 15.6
1+.0 372 101.7 18.4 7 1540 12.4 68
2+.0 268  164.8 20.3 241 168.3 16.8 72 135
3+.0 n3y 177 23.3 M3 177.7 23.13 71 126 1s9
4+.0 9 200.3 27.9 9 200.3 27.9 61 107 155 19g
Weighted Mean . 172 20.2 70 132 1s8 196
Growth Increment ’ 70 62 3 28
ADULTS
1. * ] 135 136
2. * 179 77 157 . 182
3. % 89 67 127 178 191
4, * 3 ‘ 50 92 141 15 1836
Heighted Mean 147 177 18] 185
Growth Increment 4 73 130 (-26)

* Ocean years pooled

Table 9. Measured and back-calculated fork Tengths (mm) of wiid Jjuvenile and
adult steelhead trout during freshwater restdency in the Cowichan

River,
Length at Capture Mean Calculated Length
Age All Fish Smolts At End of Year At
Group N Mean — SD N Hean —3p T ] 3 4 Smolting
JUVENILES
0+.0 206 73 17.8
1+.0 110 127 17.8 66
2+.0 2 161 28,2 76 135
Weighted Mean . 66 135
Growth Increment 66 69
ADULTS
i, * 12 101 171
2. * 7 84 15 181
3. 0% 3 68 152 228 240
Weighted Mean 91 151 228 133
Growth Increment 31 60 75

* Ocean years pooled
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Table 10. Back-calculated fork lengths {mm) of wild winter (1952-82) run
aduit steelhead trout during freshwater residency and at smolting
in 8 Vancouver Island stréams.

Mean Calculated Length

Agea At End of Year AL

Stream Group N T.0 2.0 3.0 §.0 Smolting

Amor de Cosmos 1. *
2. % 5 85 156 156
3. * 4 76 133 178 178
Weighted Mean 81" 146 178 166
Growth Increment 8] 65 32 .

Englishman 1. *
2. * 24 89 146 165
3. 0 * 8 a3 13¢ 181 188
Weighted Mean 83 144 181 170
Growth Increment as 56 37

tittle Qualicum 1. *
2. * 9 86 161 177
3.0* ] 72 124 170 170
Welghted Mean 85 158 170 177
Growth Increment 85 73 12

Nanaimo 1. *
2.0* 45 87 149 162
3. * 5 72 127 168 174
Weighted Mean 86 147 168 163
Growth Increment 86 61 21

Himpkish 1. *
2. * 9 64 108 118
3.0* 4 U1:) 100 156 163
Weighted Mean 62 167 156 132
Growth Increment 62

Oyster 1. * 1 106 167
2. * 28 89 148 163
3. 0* 4 79 134 187 187
Weighted Mean 89 147 187 165
Growth Increment 39 45 40

Socke 1. *

. 2. * 19 87 155 165

3, * 10 94 149 200 200
4, * i 76 120 158 20} 201
Weighted Mean 39 151 196 201 171
Growth Increment ag 62 45 5

Puntiedge 1. * 1 132 181
2. * 22 a1 161 172
3. * 5 78 130 167 167
Weighted Mean 90 156 167 171
Growth‘lncrement . 90 66 11

& Ocean years pooled
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Table 14. Relative freguencies (%) of total age at first spawning by summar unq
winter run steelhead collected from Vancouver Island streams and
hatchaeries batween 1952 and 1982.

Total age at spawning

Strean N 2 | q S [ 7 8

WILD WINTER RUN

Amor.ds Cosmos 9 88.9 11.1

Big Qualicum 246 0.1 13.0 S59.9 25.8 1.2

Campbell/Quinsan 2350 0.3 27.7 56.6 14.5 0.3

Cowichan 489 0.8 35.5 49,9 12.7 1.0

Englishman 112 ¢.9 435.5 49,1 4.5

Gold 119 0.8 24.4 40.3 32.8 0.8 0.8

Little Qualicum 41 2.4 0 83.4 29.3 4.9 Z

Naniaimc 122 43.4 52.5 4.1 :

Nimpkish 18 5.6 ©&.7 27,8

Oystar e7 1.5 58.2 40.3

Puntliedge 75 2.7 62.7 34.7

Salmon 118 c.8 28.0 $5.9 14.4 0.8

Sooke 31 61.3 33.5 3.2

Stanp/Sonass 180 2.8 43.9 46.7 6.7

All streams 2161 0.1 S.9 47.1 39.3 7.0 0.2 0.1

WILD SUMMER RUN

Ash/Stamp 227 4.4 54.2 37.0 4.0 0.4

Goid/Hebar 150 4.0 40.0 52.0 4.0

Puntledge 42 14.3 26.2 50.0 9.3

Tsitika 37 18.9 73.7 5.4

All streams 456 3.5 30.6 38.0 25.0 1.7 0.2
HATCHERY WINTER RUN

Big Qualicum 757 0.9 68.6 30.5

Quinsam 133 1.3 23.3 75.2

Robertson 29 3.4 37.9 $5.2 3.4

All hatcheriss 919 1.1 £0.9 37.8 0.3

HATCHERY SUMMER RUN

Robertaon 1570 48.0 51.5 0.5
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streams, 1952 to 1982,

Table 17- Rapeat spoawning fregquencies of wild and hatchery winter run steelhsad (by sax) collected from Vancouver Island

-~
»
~r
[
;]
Ka |
=
x
[
=7
1]
Y
o
b
{
=]
a
-]
g‘
Y]
'Y
@
>
:S
L]
~
0
[

Repeat Spawners

Fenale

Kale

Mzles Fomales

Nusbar

Ratio
(F

of Fish

2nd 3rd 4th

1st

2nd 3rd  4th

1st

| B

Captured

Systen

WILD WINTER RUN

0.0
0.3
0.4
.0
0.0
0.0
5.6

88.9 11.1 0.0

.0
0.4
c.0
c.0
0.0

0.0 18.7

S.6

a3.3

6.7
145 1l.4

=]

6.7
2.8
2.7
1.5
2.8
6.3
4.2
3.1

15
1272
375

S29

Asor de Cosmos

Big Gualicum

3.2
0.0

81.2 15.3

83.8

0.4
2.3
0.0
0.0
4.0
0.0
0.0
0.0
0.0
0.0
0.0
.0
0.0

$3.6

4.5:1

32

9.8

S.3
0.0

92.4
100.90

6.7

1¢

Carpball/Quinsax

Cowichan

1.6
1.8

€.5

8z2.5 1S.9

2:1
S:1

1.6:1

63 11.9
11 14.3

29

80.0 18.2

9.1

90.9

Englishman

Gold

82.3 1li.3

0.0

86.0 10.0

8.8

11

112

77.8 11i.1 5.6

0.0
0.0

0.0
0.0
0.9
0.0
¢.0

83.3 1s.7

4:1

4 16.7

1

24
18l

Little Qualicum

Nanaimo

4.2
0.0
7.8
1.5

84.4 11.%
90.0 10.0

80.4 1l.8
82.1 1i4.9

7.7
0.9
0.0
3.9
3.7
0.0
1.8

92.3
100.0

9.3
6.3
io 14
12 12.0

15

0.0
0.0
1.0
l.4
0.0
0.6

16

Ninpkish
Oyster

0.0

100.0

10:0

71
100

97.0

1z2:1

Puntledge

Saimon
Sooke

96.3
100.¢

el

5:1

8 1ll.e6
$ 12.%

1

&9

s.

40
178

0.8

2.5

86.7 10.0

98.2

16:1

8.1

Stamp/Sorass

0.4

2.8

3.4 13.4

0.8 Q.2

S.6

4.2:1 3.3

270 10.4

2.5

64

2585

All streoms

HATCHERY WINTER RUN

0.4
6.0

1.2

2.4

8s.2 10.2

91.7
100.0

0.0
0.0
0.0

9.4 3.6 0.0
0.0

61
7:1

7.6
6.3
0.0

60

1.3
0.9

10

731

Big Qualicum

Buinsan

€.0
0.0

3.6
Q.0

96.4
100.0

112

34

Robartsen

c.0 0.0 8%.3 9.1 1.3 0.3

2.5

96.5

B.1:1

7.2

&7

1.2

11

937

All hatcheries
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MEAN SCALE INCREMENT (mm)

Fig. 5.
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0.30
Big Qualicum
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0.10F
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005F
1 1 1 A
© 0 i 2 3 4 5
SMOLT AGE
0.30
s Campbell / Quinsam
0.25| |
0.20
B A
0.15 S
0.10F
005+ g
%S
! \ \ A
°5 I 2 3 4 5
SMOLT AGE

Freshwater marginal scale increment (growth from last freshwater
annulus to the edge of the freshwater zone) for wild ( )
and hatchery (-——=——-- ) steelhead smolts (S) and adults {A) sampled
from the Big Qualicum and Campbell/Quinsam rivers.
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