# TRENDS IN ANGLING AND PISCIVORE CONDITION FOLLOWING ELEVEN YEARS OF NUTRIENT ADDITIONS IN ARROW LAKES RESERVOIR (ARROW LAKES RESERVOIR CREEL SURVEY 2003 - 2009) 

Steve Arndt, M.Sc.
Fish \& Wildlife Compensation Program - Columbia Basin 103-333 Victoria St., Nelson, B.C.
and

Carl Schwarz, Ph.D, P. Stat. (SSC, ASA)
Dept of Statistics and Actuarial Science
Simon Fraser University, Burnaby, BC

December 2011


## Executive Summary

The Fish and Wildlife Compensation Program - Columbia Basin (FWCP) is a joint initiative of the Province of British Columbia, BC Hydro, and Canada Fisheries and Oceans to conserve and enhance fish and wildlife populations affected by BC Hydro dams in the Canadian portion of the Columbia River basin. Arrow Lakes Reservoir (ALR) is influenced by Hugh Keenleyside dam (completed 1968) near the outlet of the original lakes, and by Mica (1973) and Revelstoke (1984) dams and their associated reservoirs upstream. The FWCP annually funds a large scale nutrient program and kokanee spawning channel on ALR as compensation for footprint dam impacts. Data collected through angler creel surveys are a key component of program evaluation.

Access point angler surveys have been conducted at selected ALR locations as early as 1976 to monitor the effects of BC Hydro dams and fishery compensation efforts including Hill Creek kokanee spawning channel, started in the 1980s, and the nutrient program started in 1999. These surveys provide a valuable long term index of fishing effort and harvest starting from dam construction through to 11 years after the beginning of the nutrient program. In addition to monitoring angling trends, they are useful for evaluating the response of rainbow trout and bull trout populations, which have not been monitored systematically by other methods over this period. This report provides reservoir-wide estimates of angler effort, catch and harvest for 2003 to 2009, and summarizes longer term trends (1987-2009) at three access locations to assess the performance of FWCP compensation initiatives and in particular, to compare the pre-nutrient era (1987-1998) to the eleven years of the nutrient program. Trends in relative condition factor ( $K_{n}$ ) are also examined to evaluate the suitability of feeding conditions for apex predators, bull trout and piscivorous rainbow trout, that feed primarily on kokanee.

Creel survey data were collected at three primary access locations (Shelter Bay, Nakusp, Castlegar) for five days per month (three weekdays and two weekend/holidays). For estimation of total reservoir effort and catch from 2003 on, the monthly estimates from the three access locations were expanded using correction factors based on the ratio of access-sampled boats to total boats counted during 48 airplane flights made over the whole reservoir between April 2003 and March 2005. For longer term comparisons, the annual estimates specific to the three sampled access sites were used.

Total annual effort ( $\pm 95 \%$ confidence limits) from 2003 to 2009 ranged from 14,500 ( $\pm 2400$ ) to $17,600( \pm 3,500)$ angler days. Annual catch (all species including released fish) ranged from 12,000 to 25,000 with harvest ranging from 8 to 12 tonnes. Angling effort out of the Castlegar access has declined by approximately $50 \%$ in recent years due to a substantial decline in the kokanee fishery. Nakusp effort increased significantly shortly after the beginning of the nutrient program and remained above the 1987-1998 range up to 2009. Shelter Bay effort has remained relatively constant since 1987. Annual expenditures wholly attributable to the fishery are about $\$ 1$ million based on daily values from a federal angler survey, or $\$ 3$ million including purchases partly attributable to the fishery. Residents of British Columbia comprised about $90 \%$ of anglers in all years.

Kokanee harvest from 2003-2009 ranged from 2,300-9,000 fish/year (300-1,800 kg/year) with average catch rates (CPUE) of $<0.6$ fish/h. Recent harvest estimates at the monitored sites are
less than $20 \%$ of those from 1990-1996 with associated declines in kokanee-directed effort. Kokanee effort and harvest since 1998 were positively related to mean size of retained kokanee, which was larger in the early years of the nutrient program. Bull trout catch from 2003-2009 ranged from 2,600-3,800 fish/year, about half of which were retained for harvests of 3,300$5,400 \mathrm{~kg} / \mathrm{year}$; CPUE ranged from 0.06-0.08 fish/h. Catch of bull trout increased sharply in 2001, three years after the beginning of the nutrient program, and remained at a higher level until 2005. The increase was concurrent with a large increase in kokanee abundance, in particular older age classes, during the early years of the nutrient program. Since then, catch has declined to levels similar to pre-nutrient years, coincident with declines in kokanee spawners. Rainbow trout catch from 2003-2009 ranged from 3,900-6,400 fish/year; about two thirds of which were retained for harvests of $2,500-4,400 \mathrm{~kg} / \mathrm{year}$; CPUE ranged from $0.06-0.08$. Harvest of piscivorous rainbow trout over 50 cm was in the range of 200-500 fish/year with a catch trend similar to that of bull trout. Hatchery stocked (clipped) bull trout and rainbow trout made up less than one percent of the harvest in most years, suggesting low survival to catchable size. Burbot comprise a much smaller, but relatively stable, fishery with catch ranging from 400-700 fish/year and harvest $\sim 700 \mathrm{~kg} /$ year.

Mean annual condition factors $\left(K_{n}\right)$ of piscivorous rainbow trout and bull trout were closely correlated $\left(\mathrm{R}^{2}=0.81\right)$, as would be expected given the similarities in diet. A period of enhanced $K_{n}$ from 2002 to 2005 paralleled catch trends. Mean $K_{n}$ was also positively related to several measures of fishery quality (e.g., total annual catch, catch of larger fish, CPUE) supporting the notions that: recruitment and survival of piscivores are strongly influenced by suitable feeding conditions, and angler catch trends are valid indices of piscivore abundance. Mean $K_{n}$ did not appear to be related to hydroacoustic estimates of total density or biomass of all age classes of kokanee in the same year; however, relationships to kokanee spawner escapement were quite strong ( $\mathrm{R}^{2}=0.73$ and 0.60 for bull and rainbow respectively) suggesting that optimal feeding conditions are related to the abundance of larger (older) kokanee. For piscivorous rainbows, there was also some evidence of a dome-shaped relationship to prey size after accounting for spawner abundance, with optimal $K_{n}$ occurring when kokanee spawner size was $\sim 23 \mathrm{~cm}$.

Increases in piscivore catch rate, harvest, size and condition factor suggest a strong positive response to nutrient additions reaching to the upper trophic levels during the first seven years of the program, at least in the upper basin of the reservoir. Declines in more recent years suggest trophic efficiency has been reduced, for reasons that are as yet unclear. The recent decline in kokanee angling may be related at least partially to the reduction in size and vulnerability to angling that accompanies increased density. Reductions in kokanee catch limits (from 15 to 5 since 1995) may also be a factor in the reduced effort and harvest for this species.

## Acknowledgements

Thanks to the anglers who contributed information to the surveys, and creel technicians Glen and Gail Olson in Nakusp, Deb and Lorne Imeson and staff at Scotties Marina, and Allison Alder at Shelter Bay for their efforts in collecting field data. Beth Woodbridge provided data entry and administrative support.

The report was improved by review comments from Dale Sebastian and Jeff Burrows of the Ministry of Forests, Lands, and Natural Resource Operations (MFLNRO). Dale also provided hydroacoustic kokanee data, a summary of regulation changes over time, and other information relevant to interpretation of condition factor and angler effort trends.

The Fish and Wildlife Compensation Program - Columbia Basin is a joint initiative of the Province of British Columbia, Canada Fisheries and Oceans, and BC Hydro to conserve and enhance fish and wildlife populations affected by BC Hydro dams in the Canadian portion of the Columbia River basin. Funding is provided by BC Hydro as a requirement of their water licences for dams in the region.

## Table of Contents

Executive Summary ..... ii
Acknowledgements ..... iv
Table of Contents ..... v
List of Tables and Figures ..... vi
1.0 INTRODUCTION ..... 1
2.0 METHODS ..... 2
2.1 Access Sampling ..... 2
2.2 Overflight Boat Counts ..... 5
2.3 Analyses ..... 5
2.3.1 Logistical Constraints .....  5
2.3.2 Effort and Catch Estimation ..... 6
2.3.3 Catch per Unit Effort and Fin Clips .....  8
2.3.4 Condition Factor of Piscivorous Rainbow Trout and Bull Trout and Relationship to Attributes of the Kokanee Population .....  8
3.0 RESULTS AND DISCUSSION ..... 10
3.1 Fishery Overview ..... 11
3.2 Angling Effort and Potential Expenditures ..... 14
3.3 Harvest, Size Distribution, and Catch Rates ..... 16
3.3.1 Bull Trout ..... 16
3.3.2 Rainbow Trout ..... 20
3.3.3 Kokanee ..... 26
3.4.4 Burbot ..... 30
3.4 Piscivore Condition Trends and Implications ..... 34
3.4.1 Trends ..... 36
3.4.2 Relationship to Kokanee Population Structure ..... 37
3.5 Hatchery Contribution to the Fishery ..... 39
4.0 CONCLUSIONS ..... 42
4.1 Recommendations ..... 44
5.0 REFERENCES ..... 46
6.0 APPENDICES ..... 50

1. Estimating the Precision of the Creel Surveys on Arrow Lake.
2. Monthly correction factors and standard errors pooled over daytypes and all years from the ratio of overflight boat counts and interviewed anglers at 3 access points.
3. Angler residence composition from 1976 to 2009.
4. Arrow Lakes creel survey annual estimates using a common monthly correction factor applied to all zones to adjust for boats returning to non-sampled access sites
5. Arrow Lakes creel survey annual estimates using separate monthly correction factors for each site/zone combination to adjust for boats returning to non-sampled access sites.
6. Size statistics for bull trout, rainbow trout, kokanee, and burbot in the Arrow Lakes Reservoir creel survey from 1998 to 2009.
7. Locations of fishing boats on Arrow Lakes Reservoir for 48 flights made between April 2003 and March 2005.

## List of Tables and Figures

Table 1. Spatial and temporal strata for the Arrow Lakes Reservoir creel surveys from 2003-2009 ..... 3
Table 2. Sampled rod-hours, harvest, catch, and catch rates (fish/hour) of boats returning to the Edgewood and Fauquier ramps compared to Castlegar and Nakusp access locations in 1998 ..... 6
Table 3. Three measures of estimated angling effort ( $\pm 95 \%$ confidence limits) for Arrow Lakes Reservoir from 2003 to 2009 ..... 15
Table 4. Bull trout angler catch and harvest ( $\pm 95 \%$ confidence limits) statistics for Arrow Lakes Reservoir from 2003 to 2009 ..... 17
Table 5. Rainbow trout angler catch and harvest ( $\pm 95 \%$ confidence limits) statistics for Arrow Lakes Reservoir from 2003 to 2009 ..... 21
Table 6. Kokanee catch and harvest ( $\pm 95 \%$ confidence limits) for Arrow Lakes Reservoir from 2003 to 2009 ..... 27
Table 7. Estimated number of burbot caught and retained ( $\pm 95 \%$ confidence limits), percentage of fish kept, and harvested weight for Arrow Lakes Reservoir from 2003 to 2009 ..... 32
Table 8. Burbot catch rate comparison from creel surveys in four Kootenay Region Lakes. ..... 32
Table 9. Comparison of Arrow Lakes Reservoir burbot harvest to other North American lakes ..... 32
Table 10. Summary of the number and percent (upper 95\% confidence limit) of hatchery-clipped bull trout and rainbow trout in Arrow Lakes Reservoir creel samples from 2003 to 2009 ..... 40
Table 11. Sample location, reported clip, possible year of stocking and length of marked fish in 2003 to 2009 creel surveys on ALR ..... 41
Table 12. Summary of fish harvest from Arrow Lakes Reservoir from 2003 to 2009 ..... 42
Fig. 1. Map of Arrow Lakes Reservoir showing three sampled access locations and zone boundaries used for assigning overflight boat counts ..... 4
Fig. 2. Proportion of angling effort (sum of sampled angler days) by species sought ..... 11
Fig. 3. Catch of harvested and released fish by month and species at three access locations on Arrow Lakes Reservoir in 2009 ..... 13
Fig. 4. Number of angler days by month at three access locations on Arrow Lakes Reservoir in 2009 ..... 14
Fig. 5. Trends in annual angler days for three access locations on Arrow Lakes Reservoir from 1987 - 2009 ..... 15
Fig. 6. Trends in (a) fish harvested (b) targeted rod-hours, and (c) catch rate for bull trout from three access locations in Arrow Lakes Reservoir from 1987-2009 ..... 18
Fig. 7. Fork length distributions of harvested bull trout from the Arrow Lakes Reservoir creel survey from 1998 to 2009 ..... 19
Fig. 8. Trends in the (a) number of fish kept, (b) directed rod-hours, and (c) catch rate for rainbow trout from three access locations in Arrow Lakes Reservoir from 1987-2009 ..... 22
Fig. 9. Fork length distributions of harvested rainbow trout from the Arrow Lakes Reservoir creel survey from 1998to 2009 .23
Fig. 10. Number of rainbow trout greater than 50 cm sampled at three access locations during the Arrow Lakes creelsurvey from 1998 to 200925
Fig. 11. Number of rainbow trout weighed at Nakusp by size category from 1977 to 2009 ..... 25
Fig. 12. Trends in (a) number of fish kept, (b) directed rod-hours, and (c) catch rate for kokanee anglers from three access locations in Arrow Lakes Reservoir from 1987-2009 ..... 28
Fig. 13. Fork length distributions of harvested kokanee from the Arrow Lakes Reservoir creel survey from 1998 to 2009 ..... 29
Fig. 14. Relationship between the amount of fishing effort for kokanee and length of harvested kokanee in Arrow Lakes Reservoir from 1998 to 2009 ..... 30
Fig. 15. Trends in the (a) number of fish kept, (b) directed rod-hours, and (c) catch rate for burbot anglers from Nakusp access location in Arrow Lakes Reservoir from 1987-2009 ..... 31
Fig. 16. Length frequency distributions of burbot angled in Arrow Lakes Reservoir from 1998 to 2002 ..... 33
Fig. 17. Comparison of annual mean relative condition factor ( $K_{n}$ ) for bull trout and rainbow trout over 50 cm in Arrow Lakes Reservoir from 1996 to 2009 ..... 34

Fig. 18. Graphs showing positive relationships between mean annual condition factor $\left(K_{n}\right)$ and catch rate , total catch , and catch of larger fish for bull trout and piscivorous rainbow trout from Arrow Lakes Reservoir 1998-2009

Fig. 19. Mean annual ( $\pm 95 \%$ confidence limits) condition factor $\left(K_{n}\right)$ relative to the average weight of pre-nutrient fish $\left(K_{n}=1\right)$ for all bull trout and for bull trout over 60 cm in Arrow Lakes Reservoir from 1991 to 2009 $\qquad$
Fig. 20. Mean annual ( $\pm 95 \%$ confidence limits) condition factor $\left(K_{n}\right)$ relative to the average weight of pre-nutrient fish $\left(K_{n}=1\right)$ for piscivorous rainbow trout in Arrow Lakes Reservoir from 1994 to 200937

Fig. 21. Relationships between bull trout and piscivorous rainbow trout condition $\left(K_{n}\right)$ and kokanee population structure38

Fig. 22. Residuals from linear regressions using kokanee spawner abundance to predict annual median $K_{n}$ of bull trout and piscivorous rainbow trout plotted versus the average size of kokanee spawners39

### 1.0 INTRODUCTION

Arrow Lakes Reservoir (ALR) extends from Revelstoke to Keenleyside Dam near Castlegar in the West Kootenay Region of British Columbia. It has a total surface area (upper and lower basins) of 46,450 ha at full pool (Pieters et al. 2003), and is affected by three dams, one at the reservoir outlet (Hugh L. Keenleyside Dam) and two upstream (Mica and Revelstoke dams). Impacts to fish populations include the loss of stream spawning and juvenile rearing habitats in the lower reaches of tributaries and upstream of Revelstoke Dam, and changes in nutrient levels, water clarity and primary productivity due to upstream dams (Matzinger et al. 2007, Moody et al. 2007, Hagen 2008, Arndt 2009a, 2009b). The fish community in ALR includes 24 species (McPhail and Carveth 1992) with the most abundant in anglers' catch being kokanee Oncorhynchus nerka, bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and burbot Lota lota. Rainbow trout occur in at least two different ecotypes, a slower growing (mostly insectivorous) form reaching a maximum length of about 45 cm , and a piscivorous ecotype that can exceed 90 cm (Arndt 2004b).

Early attempts to compensate for dam impacts focused on replacing juvenile production from lost stream habitat. Hill Creek Spawning Channel, located north of Nakusp, was started in the early 1980s to provide spawning and juvenile rearing habitat for kokanee and rainbow trout (Lindsay 1982, Barney 2009). Annual kokanee fry production from the channel has ranged from less than 1 million to over 20 million (MOE/FWCP file data). The channel also has high use by rainbow trout for spawning and juvenile rearing (Porto and Arndt 2006). A fish hatchery, operated at the same site for production of bull trout and rainbow trout, was discontinued after 2000 due to poor survival of released fish (Arndt 2004a). However, small releases of piscivorous rainbow trout were made from 1995 to 2002 by Selkirk College, and from 2005 to 2009 the Freshwater Fisheries Society of BC has released triploid rainbow trout yearlings on an experimental basis. Since bull trout typically enter the fishery starting at age 5 and can live for more than 10 years (Sebastian et al. 2000), stocked fish of both species could be at large in the lake during the period covered by this study.

In 1999, another large-scale compensation project commenced to address the issue of nutrient loss in upstream reservoirs. Limiting nutrients (phosphorus and nitrogen) are distributed in the upper basin during the growing season with the goal of increasing reservoir primary productivity (Pieters et al. 2003, Schindler et al. 2006). This in turn is expected to translate into higher kokanee production and improved growth and survival of bull trout and piscivorous rainbow trout in the lake phase of their life history. Productive fish stocks are expected to provide angling opportunities and economic benefits to the local communities and province. Funding for Hill Creek Spawning Channel and the nutrient program is provided by BC Hydro through the Fish and Wildlife Compensation Program - Columbia Basin (FWCP), a joint initiative of BC Hydro, the provincial government, and Fisheries and Oceans Canada.

Angler surveys have been conducted annually at selected access points on ALR since the 1970s to monitor the effects of the dams on fish populations and recreational fisheries, and the success of compensation efforts. These surveys provide a valuable index of angling effort and harvest trends, and the only long-term data on piscivorous fish species in the reservoir. Sebastian et al. (2000) summarized creel trends to 1997 and Arndt (2002a, 2004b) from 1998 to 2002. This report provides detailed estimates of angler effort and catch from 2003 to 2009, and summarizes longer term trends starting in 1987 to allow a comparison of years before and after the beginning of the nutrient program. It differs from the previous reports in that the 2003 to 2009 access point data were
expanded to whole-reservoir estimates using a correction factor based on airplane counts of the total fishing boats. ${ }^{1}$

Two categories of data are provided by the survey: angler effort and catch, and population metrics (size structure, condition) of the harvested species. By combining the two (changes in catch/harvest and changes in size/condition), it is possible to test hypotheses about ecosystem function and limiting factors to better understand how to optimize compensation benefits. Questions and corresponding objectives include the following:

| Question | Objective |
| :--- | :--- |
| - What is the recreational, food, and approximate <br> economic value of the ALR fishery? | Provide annual estimates of angler effort, catch, <br> and harvest in the reservoir as a measure of <br> recent recreational, food and economic benefits, <br> and as a baseline for comparison to other large <br> lakes. |
| - How has the fishery changed (catch, harvest, <br> effort, catch-per-unit-effort) since the beginning <br> of the nutrient program in 1999? | Evaluate the success of the major compensation <br> initiatives, particularly at the upper trophic <br> levels, over the 11 years of the nutrient program <br> interms of the recreational fishery. |
| - What fish population conditions contribute to <br> increased angler use and community benefits, <br> and are there other factors that could affect <br> angler behaviour and interpretation of before/ <br> after nutrient addition effects? | Determine the relationships between angler <br> effort and fishery characteristics such as catch <br> rate and size distribution of the harvest to assist <br> with adaptive management for increased <br> benefits. Examine changes in regulations and the <br> potential influence on angler effort (i.e., <br> kokanee). |
| - Have feeding conditions for apex predators <br> improved since the beginning of the nutrient <br> program? | Evaluate prey suitability for apex predators (bull <br> trout and piscivorous rainbow trout) since the <br> beginning of the nutrient program. |
| What prey conditions seem optimal for transfer <br> of nutrient benefits to upper trophic levels of <br> fish production? | Investigate relationships between apex predators <br> (abundance, size, condition) and the abundance <br> and population structure of kokanee prey to <br> better understand what optimizes transfer <br> efficiency to their trophic level. |

### 2.0 METHODS

### 2.1 Access Sampling

Anglers were interviewed by creel clerks at three primary access sites (Shelter Bay, Nakusp, Castlegar) for five days per month from January 2003 to December 2009 (Table 1; Fig. 1). Three weekdays (WD) and two weekend/holidays (WE) were sampled in each month. This provided coverage of approximately a sixth of the total days in the survey period including a quarter of

[^0]weekend days. Sampling was randomized within the day types and sampled days were the same at all access points so that aerial boat counts could be calibrated against boats returning to the three monitored sites. In keeping with past surveys, sampled weekdays included one randomly-selected Monday in each month, although for analysis purposes all weekdays were combined (Arndt 2002a).

Creel clerks monitored the access points from two hours after official sunrise to one half hour after sunset, and the number of interviews was assumed to be the total effort for a given access point and day. ${ }^{2}$ Interviews took place at the completion of the fishing trip. Recorded information for each angling party included start and end time of the fishing trip, fish species sought, number of fish harvested and released (by species), number of anglers and rods used, and angler residence. Fork length (FL) and weight were recorded for a subsample of harvested kokanee with the stipulation that all fish from a given boat be measured. Size measurements were recorded for all harvested bull trout and rainbow trout and all were examined for the presence of hatchery fin clips (contingent on angler permission).

At the Shelter Bay and Nakusp access sites, there is only one active boat ramp, and all returning angling parties can usually be contacted. At the Castlegar location near the south end of the reservoir, there were three ramps in close proximity up to 2008 (Scotties Marina, Syringa Marina, Syringa Provincial Park) and 2 ramps afterward (Syringa Marina closed). During winter months when angling effort is lower, complete coverage of all Castlegar ramps was possible by waiting in a vehicle at the most northerly ramp and following returning boats to other ramps if necessary. During summer high activity periods, the Castlegar clerk interviewed as many boats as possible, although it was not always possible to interview every returning party.

Table 1. Spatial and temporal strata for the Arrow Lakes Reservoir creel surveys from 2003-2009.

| Access Location | Description | Sampling Frequency |
| :--- | :--- | :--- |
| 1. Shelter Bay | Shelter Bay Provincial Park boat ramp <br> (shifts to nearby ferry ramp if park ramp is <br> inaccessible due to snow) | 5 days per month (3 weekdays <br> and 2 weekend/ statutory <br> holidays) |
| 2. Nakusp | Nakusp government wharf in the Town of <br> Nakusp |  |
| 3. Castlegar | Scotties Marina, Syringa Marina, Syringa <br> Park public boat launch at the south end of <br> the lower basin of the reservoir |  |

[^1]

Fig. 1. Map of Arrow Lakes Reservoir showing three sampled access locations and zone boundaries used for assigning overflight boat counts. Shelter Bay zone extends from Revelstoke south to the mouth of Halfway River, Nakusp zone from Halfway River south to the mouth of Van Houten Creek, and Castlegar zone from Van Houten Creek to Keenleyside Dam. Shore angling in the northern part of Revelstoke Reach was outside the scope of the study.

### 2.2 Overflight Boat Counts

Forty-eight overflight boat counts were conducted between April 2003 and March 2005 (Appendix 7) on days when access interviews were also conducted. Counts were done during or near the period of peak daily angling activity (as determined in previous years) rather than randomly to reduce the likelihood of flights during periods of zero activity (Dauk and Schwarz 2001). The location of boats on the reservoir was recorded on map datasheets to allow counted boats to be assigned to three fishing zones in relation to the monitored access sites (Fig. 1). Non-fishing boats were tallied separately and not included in calculations. A large forest fire adjacent to the reservoir prevented completion of all 12 months in the 2003-04 fiscal. Under-sampled or missing months were completed in the 2004-05 fiscal such that a minimum of three flights were available for all 12 months (although in most cases the flights were done over more than one year). Flights began in Revelstoke, heading south to Keenleyside Dam and then returning. For each flight a separate count was made for the southbound and northbound flights with start and end times recorded for each. A low number of shore-based anglers were recorded during the flights (primarily in the northern end of the reservoir near Revelstoke) but this effort was considered to be outside the scope of the study since there were no interview data from this area and shore anglers are only rarely observed at the monitored sites.

### 2.3 Analyses

### 2.3.1 Logistical Constraints

Arrow Lakes Reservoir is approximately 230 km in length and is divided into two main basins by a narrows about 16 km south of the Town of Nakusp (Fig. 1). Access site creel surveys on the lakes began in 1976, but the number of sampled sites has changed periodically due to changes in funding allocations. The three public access sites used in this study have the highest usage and were sampled most years since 1978, providing a valuable long term data series on the fishery. Other private and public launch sites are used to a lesser extent because they are difficult or impossible to use at low reservoir levels, not ploughed in winter, and in more remote, less sheltered locations. Two of these (public launches at Fauquier and Burton) were sampled intermittently up to 1998, after which they were discontinued due to funding constraints and low use relative to the other sites.

Prior to the flights in this study, there was limited information on the spatial distribution of boat and shore angling in the reservoir, and it was expected that the three sampled access sites would intercept the majority of boat effort on the reservoir in most months, with relatively little angling occurring in the middle and northern parts of the lower basin that are far from the three sampled locations. Flights showed higher than expected angling effort in this area in warmer months, particularly on days of fair calm weather (FWCP file data). Access may have been from two unmonitored public launches (see below) as well as a provincial park and some private docks in the area. These non-sampled anglers complicated the analysis because the characteristics of the fishery could only be inferred from limited data collected at Edgewood and Fauquier prior to the 2003 2009 study period (Table 2). The data suggest that the fishery in this area is intermediate between Nakusp and Castlegar sites (i.e., kokanee catch rates were a fifth of Castlegar but ten times Nakusp, bull trout catch rates were more similar to Nakusp, and rainbow catch rates more similar to Castlegar). Therefore, if Castlegar catch rates are applied to these boats, kokanee harvest may be overestimated and bull trout underestimated, but if Nakusp catch rates are applied, kokanee and rainbow trout may be underestimated. Consequently two different methods of analysis were used as described below.

Table 2. Sampled rod-hours, harvest, catch, and catch rates (fish/hour) of boats returning to the Edgewood and Fauquier ramps compared to Castlegar and Nakusp access locations in 1998.

|  | Castlegar |  | Edgewood and Fauquier <br> Combined |  | Nakusp |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Catch rate | Total | Catch rate | Total | Catch rate |
| Rod hours | 2316 | - | 386 | - | 1507.5 | - |
| Kokanee harvest | 1223 | 0.528 | 44 | 0.114 | 15 | 0.010 |
| Kokanee catch | 1223 | 0.528 | 49 | 0.127 | 21 | 0.014 |
| Bull trout harvest | 31 | 0.013 | 12 | 0.031 | 63 | 0.042 |
| Bull trout catch | 31 | 0.013 | 14 | 0.036 | 98 | 0.065 |
| Rainbow trout harvest | 114 | 0.049 | 19 | 0.049 | 30 | 0.020 |
| Rainbow trout catch | 120 | 0.052 | 26 | 0.067 | 45 | 0.030 |

### 2.3.2 Effort and Catch Estimation

Angler interview data were entered into an Access database using a form specifying allowable entries for non-numeric and some numeric categories to minimize data entry errors. Further quality assurance came from examining annual maximum values for each numeric category (e.g., number of anglers and species catch per party) and verifying or correcting unusual values. Data were then transferred to SAS for estimates of effort, catch and harvest, or Systat (Version 10) for analysis of fish biometric data. SAS programming was done at Simon Fraser University. Monthly site-specific estimates (and standard errors) for angler effort, catch and harvest were computed by expanding the average for each daytype (WD or WE) in each month by the number of days of that daytype (see Appendix 1 for further description).

To obtain total monthly and annual estimates adjusted for active boats not interviewed at the sampled sites, the monthly site-specific estimates were multiplied by a correction factor derived by combining overflight boat counts with fishing times recorded in access site interviews on the same day. First, information from both daily flights (southbound and northbound) was pooled with the corresponding number of interviewed boats to compute a daily correction factor for each counted day. For example, if on the first count 10 boats were sighted from the air and 5 interviewed boats were recorded as fishing during the count, and on the return count, 5 boats were sighted and 3 were recorded as active in the interview data (the same boats could be active on both flights), the combined daily correction factor for both flights was $(10+5) /(5+3)=15 / 8$ (Dauk and Schwarz 2001, equation 4). Daily correction factors were highly variable (especially over different seasons) but did not seem to differ between day types (WE or WD) when compared within the same month and zone so were pooled as described below.

Monthly correction factors $(R)$ and standard errors (se) were computed from the daily data (pooled WE and WD) using a ratio estimator approach where the number of boats counted in the overflight divided by the number of interviewed boats active during the overflight are the Y, X data. Since we were finding a common ratio over all years for each month or month-zone combination, there were several Y,X pairs from different dates in each case, and the correction factor was calculated as sum(y)/sum(x) for the relevant pairs. For example, if there were three flights for a particular month-zone combination with $(\mathrm{Y}, \mathrm{X})=(10,4),(9,3),(5,3)$ as the data from each flight, then $R=(10+9+5) /(4+3+3)=24 / 10=$ 2.40. The standard error of the ratio is computed as outlined in Cochran (1977; section 4.8.1).

Site-specific creel estimates (Est $t_{\text {site }}$ ), se(Est $\left.t_{\text {site }}\right)$ for angler effort, catch and harvest were combined with $R$, and $\operatorname{se}(R)$ as follows to obtain expanded creel estimates ( $E s t_{\text {exp }}$ ) that were (approximately) adjusted for uncertainty in the correction factors:

$$
\begin{aligned}
& E s t_{\text {exp }}=E s t_{\text {site }} \times R \text {; and } \\
& \operatorname{se}\left(E s t_{\text {exp }}\right)=\sqrt{\left(\operatorname{se}\left(E s t_{\text {site }}\right)^{2} \times R^{2}+\left(E s t_{\text {site }}\right)^{2} \times s e(R)^{2}\right)} \text { using the usual rule for the variance of }
\end{aligned}
$$

a product of two random quantities.

Final standard errors of the expanded estimates are only approximate because the same data was used twice (in Est site and the estimation of $R$ ) and there is a need to account for some covariance between the creel estimate and $R$. The covariance effect is likely small because the creel data is based only on the data in one year, whereas $R$ is based on several flights possibly over three years so only a small portion of the data overlaps. Approximate $95 \%$ confidence intervals were computed as the estimate $+/-2$ standard errors.

Due to the higher than expected number of un-sampled boats, especially in the northern parts of the lower basin (see Section 2.3.1), the expanded estimates were computed in two ways (Appendices 4, 5). The first used a common correction factor for all zones that varied by month (monthly count data pooled for all years over the whole reservoir), with the exception that 1.0 was used as a minimum if the computed correction value was < 1.0 (Appendix 2). For example, in January, the computed correction factor was 0.76 but 1.0 was used so the estimates would not be reduced from the site-specific creel estimates initially produced. For February, the correction factor was 1.56 , so all site-specific estimates for February were multiplied by 1.56 . The use of 1.0 as a minimum expansion factor assumes that the error was in the overflight count if it was less than the number of active interviewed boats (i.e., boats were in locations where the flight observer did not see them). In all other cases (i.e., where the computed ratio was $>1.0$ ) we assumed that observer efficiency in the overflight was $100 \%$. Standard errors from the expanded monthly estimates were then pooled to yearly estimates with uncertainty bounds including the correction factor using the rule for the standard error of a sum of independent estimates: $\operatorname{se}\left(e s t_{1}+e s t_{2}\right)=\sqrt{\operatorname{se}\left(e s t_{1}\right)^{2}+\operatorname{se}\left(e s t_{2}\right)^{2}}$.
Because this method applies the same correction factor to all site-specific estimates, it in effect assumes that the effort and catch characteristics of unsampled fishing boats were proportional to the three sampled sites.

The second analysis method applied separate correction factors to each zone in each month (pooled over all years; Appendix 2). Because the correction factor when applied to all zones is not the simple average of the 3 zones, the results may not be consistent when aggregated up. For example, the estimated total for all zones when pooling over the access sites may be different than the sum of the estimated total of Castlegar + Nakusp + Shelter Bay estimates (Appendix 5). The difference is usually small and is an artefact of the small sample sizes. Similarly, when pooling over the three zones, the correction factor will tend to have a smaller standard error than the separate correction factor for the individual zones and so the se of the pooled total may be considerably less than the individual $s e$ 's from each zone).

This dual approach (i.e. compute an estimate using the pooled sites and then compute separate estimates for each site) was used because the zones were mostly measured on the same day and the same overflights were used for the individual zone correction factors. Consequently, there is no
simple way compute the correct standard errors that takes into account data that is reused in the estimates from each site.

A key assumption of the aerial-access survey methodology is that the catch characteristics of boats from the closest sampled site are representative of all boats in the associated zone. However, as noted above (Section 2.3.1) there were in some cases a fairly high proportion of boats fishing in areas remote from the sampled sites (especially for zone 3) that may have different catch statistics. The separation of the data into three basins may give a more accurate estimation of the spatial distribution of the effort (by zone), although estimates of the uncertainty for the estimates at the reservoir lake total are not easily computed.

In both cases above, we assumed that the expansion factor calculated from the 2003-2005 overflights could be applied up to 2009. Although this cannot be verified since there were no overflights after 2005, there were no significant changes in the number or quality of available boat ramps on the reservoir between 2003 and 2009 to our knowledge. Upgrades to several ramps are scheduled for 2010 as part of BC Hydro Water Use Plan commitments, and it will be necessary to reassess the relationship between sampled and total fishing boats for future creel surveys on ALR.

### 2.3.3 Catch per Unit Effort and Fin Clips

To track angler success rates over time, the mean annual catch rate (fish per hour) was determined for each access point/species combination using the ratio of means method, as recommended by Malvestuto (1996) for access surveys. Number of fish caught was divided by the total hours of targeted effort for that species. If a party of anglers targeted more than one species the total hours were allocated to both species. For example, if a party reported 5 hours of angling effort seeking bull trout and rainbow trout, the 5 hours were included for both species totals. This results in lower catch rates than if the hours were divided between the species, but avoids arbitrary proportioning of hours between species.

For years prior to 1998 released fish were not recorded, therefore the catch rate includes kept fish only and is designated as harvest-per-unit-effort (HPUE). From 1998 on, released fish were recorded and both HPUE and catch-per-unit-effort (CPUE) including released fish were calculated. Early HPUE values may actually be quite comparable to more recent CPUE, because few fish were released prior to the late 1990s (Glen Olson, creel technician, pers. comm.).

Fish clips were summed for bull trout and rainbow trout, and upper $95 \%$ confidence limits for the proportions of clipped fish in the harvest were calculated according to Sokal and Rohlf (1973).

### 2.3.4 Condition Factor of Piscivorous Rainbow Trout and Bull Trout and Relationships to Attributes of the Kokanee Population

To evaluate the effects of nutrient additions on prey availability at upper trophic levels, changes in size structure and length-weight relationships were investigated for bull trout and piscivorous rainbow trout, the apex predators in the ALR feeding primarily on kokanee (Arndt 2004b). Fish condition indices (weight at a given length) are an indicator of body lipid content and are frequently used to make inferences about feeding conditions and predator-prey dynamics (Weatherley and Gill 1987, Liao et al. 1995, Blackwell et al. 2000, VanDeValk et al. 2008).

Diet studies in ALR have shown that rainbow trout over 50 cm feed almost exclusively on kokanee, whereas angled rainbow trout below this threshold are mostly a slower-growing, primarily insectivorous ecotype with a lower condition factor (Arndt 2004b). Therefore only rainbow trout over 50 cm were used for evaluating prey availability. Annual totals of sampled fish $>50 \mathrm{~cm}$ were also used as an index of piscivorous rainbow harvest (although it is recognized that the harvest of fish $<50 \mathrm{~cm}$ includes an unknown number of immature piscivores).

This study used the relative condition factor $\left(K_{n}\right)$ described by Anderson and Neumann (1996) as an index of "fatness" where:

$$
K_{n}=\left(W / W^{\prime}\right),
$$

$W$ is the weight of an individual fish, and $W^{\prime}$ is the length-specific mean weight for that fish as predicted by a weight-length equation for a reference population. The reference population used for this study was fish sampled prior to the beginning of the nutrient addition program in 1999. The practical advantage of $K_{n}$ is that it compensates for allometric growth; although $K_{n}$ can change with size, average fish of all lengths have a value of one in relation to the reference population. Furthermore, by using pre-nutrient-addition fish as the reference population, the meaning of an increase or decrease is easily interpreted. For example, a fish with $K_{n}$ of 1.20 is 20 percent heavier than the average pre-nutrient fish of that length.

Length-weight data for the period prior to the beginning of the nutrient program were obtained from archived creel survey datasheets (1994 to 1997) and the existing FWCP creel database (1998). Additional length-weight records were obtained from a bull trout diet study done in 1991-1993 (MOE/FWCP data on file). All post-nutrient data were from the FWCP database. Annual lengthweight plots were first visually examined to detect and eliminate obvious errors prior to analysis, after which the seasonal pattern in the length-weight relationship was examined using monthly box plots of Fulton's condition factor $K$ (Anderson and Neumann 1996). For piscivorous rainbow trout there was evidence of a significant post-spawning effect in the months of June and July; consequently fish caught in these months were excluded from further analyses. For bull trout, a post-spawning decline in condition was not evident, so all months were retained in the dataset.

A total of 747 pre-nutrient samples were available for bull trout representing the years from 1991 to 1998. Annual sample size varied from 33 to 190, and the slope of the length-weight relationship calculated for each year ranged from 2.57 to 3.28 . In order to derive a pre-nutrient equation that was not unduly biased by the un-equal annual sample sizes, length-weight equations for each year were used to generate predicted weights for the smallest and largest lengths in the sample and each 10 cm interval between. Resulting lengths and predicted weights were then used together to compute a prenutrient reference equation for bull trout: $W^{\prime}=0.0099(\mathrm{FL})^{3.006}, \mathrm{R}^{2}=0.99$. A slope of 3.0 indicates that shape does not change as the fish grows, whereas slope $>3.0$ indicates fish are becoming more rotund as length increases and < 3.0 indicates becoming less rotund as length increases (Anderson and Neumann 1996). Sebastian et al. (2000) reported a similar equation of $W=0.012(\mathrm{FL})^{2.96}$ using a sample of 341 bull trout collected from 1987 - 1997. For piscivorous rainbow trout, only two prenutrient years had samples of $\geq 5$ and the range of lengths was too small to be representative for most years. Therefore length-weight equations for $1997(\mathrm{n}=26)$ and $1998(\mathrm{n}=13)$ were used as above to derive a reference equation of: $W^{\prime}=0.0034(\mathrm{FL})^{3.3028}, \mathrm{R}^{2}=0.99$.

Using the above reference equations, the relative condition factor $K_{n}$ was computed for each individual bull trout and rainbow trout and yearly mean and median $K_{n}$ calculated for each of the
years in the study. For analysis of post-nutrient trends, $K_{n}$ samples from upper and lower basins were pooled due to small sample sizes from the lower basin site. Telemetry studies on piscivorous rainbow trout in nearby Kootenay Lake (Andrusak and Thorley 2010) indicate these fish are highly mobile and hence more likely to move between the two basins over the course of a year. Bull trout movement may be more restricted in large reservoirs (Andrusak and Thorley 2010), but the majority of bull trout weight samples for bull trout were from the upper basin. Due to the larger sample size for bull trout, $K_{n}$ was summarized in two categories: all bull trout, and bull trout over 60 cm . Comparisons of $K_{n}$ to other parameters (angling effort, harvest, kokanee size and abundance) were made initially using simple $\mathrm{x}-\mathrm{y}$ plots and lines of best fit in Excel.

Further investigation of the relationship between $K_{n}$ and kokanee spawner abundance and size was done as follows. The yearly mean or median $K_{n}$ for each species was regressed against an index of kokanee spawner abundance in ALR, or the spawner index for upper basin streams only, or the mean length of spawning kokanee in the same year (linear and quadratic models), or a combination of spawner abundance and length. Models for the four combinations of mean/median and species (bull, rainbow) were ranked using the Akaike Information Criteria (AIC) corrected for small sample size (Akaike, 1974; Burnham and Anderson, 2002) and model weights computed. The AIC paradigm ranks the models on the tradeoff between fit (smaller residuals) and complexity (number of parameters) and can be used to rank and compare non-nested models (e.g. using the two indices). Given the limited number of years of data available ( 16 for bull trout; 13 for rainbow trout), only these very simple models were considered. Residual plots and other diagnostic plots were examined to check that the assumptions of the models were satisfied.

### 3.0 RESULTS AND DISCUSSION

A total of 5,802 angler parties were interviewed from 2003 to 2009, ranging from 779 to 911 per year. The monthly ratio of overflight boat count/interviewed boats active at the time of the flight varied from 1.00 to 2.82 and was highest from June to August when additional access points were used by more anglers (Appendix 2). Fishing boats were distributed throughout the reservoir but the majority were typically within 20 km of a monitored access location (Appendix 7). On some dates there were a number of boats in the middle and northern parts of the lower basin far from any sampled access; however, these typically comprised less than $10 \%$ of either the middle or lower zone counts on a given day, and rarely made up $30 \%$ of either zone. Since this is a relatively low proportion of the total effort, the lack of sampling between Deer Park and the narrows should not cause a strong bias of the overall results (also see Table 2, Section 2.3.1).

Annual effort and catch estimates presented in this section for the whole reservoir from 2003 to 2009 are based on the expansion using a common correction factor for all three zones that varied by month. Expanded estimates using the above method and using separate correction factors for each zone by month are provided in Appendices 4 and $5 .^{3}$ For comparing long term trends including years prior to the nutrient program, only the site-specific estimates (Est $t_{\text {site }}$ ) for boats returning to Shelter Bay, Nakusp, and Castlegar are used, because the applicability of the overflight correction factor for missed boats becomes less certain as time increases from the flight years. Site-specific data for 1987-1997 are from MFLNRO/FWCP files and 1998-99 from Arndt (2002a).

[^2]
### 3.1 Fishery Overview

The recreational fishery in ALR is focused primarily on rainbow trout, bull trout, and kokanee with a small component of burbot (Figs. 2 and 3). Other species (e.g., whitefish, Prosopium spp., northern pikeminnow, Ptychocheilus oregonensis) are occasionally reported but insignificant to harvest or effort. Rainbow trout effort and harvest includes anglers targeting the smaller ecotype (often combined with kokanee) and those seeking piscivorous rainbow trout (often combined with bull trout). Trolling is the favoured method of fishing for larger rainbows and bull trout, and for kokanee and smaller rainbows. Some fly and spin casting occurs at stream mouths for rainbow trout, and burbot fishing is typically by jigging. The majority of kokanee angling occurs in the lower basin, although in 2001 a large component of kokanee angling occurred in the upper basin when the kokanee season was first re-opened in the early years of the nutrient program. In that year, kokanee in the upper basin were larger than they have been in most recent years (Section 3.3.3) and half of the measured kokanee effort was from Nakusp (Arndt 2004a).

Proportion of catch by species varied among the monitored access locations (Fig. 3). Shelter Bay was dominated by bull trout and rainbow trout with a small proportion of kokanee. Castlegar was primarily kokanee with a small percentage of rainbow trout and bull trout. Nakusp had the most diverse fishery with the four main species represented at significant levels; rainbow trout and bull trout combined made up about half or more of the catch in all months, with kokanee comprising about half during May to August, and a smaller proportion of burbot present in all months.


Fig. 2. Proportion of angling effort (sum of sampled angler days) by species sought for anglers sampled at three access locations in Arrow Lakes Reservoir from 1998 to 2009. The kokanee season was closed in the upper basin (Shelter Bay, Nakusp) in 1999 and 2000.

Fishing occurred year round (Figs. 3 and 4) with effort and catch in warmer months targeted more towards kokanee and smaller (non-piscivorous) rainbow trout, and fall and winter anglers targeting mainly larger rainbows and bull trout. Bull trout fishing was mainly from September to May with the majority of recorded catch coming from Nakusp and Shelter Bay in the upper basin of the reservoir (Fig. 3). Piscivorous rainbow trout catches occurred mainly from the fall through to February although some were caught in all months of the year; again the majority were recorded at upper basin sites. Almost all reported burbot catch was from the Nakusp area.

The number of anglers interviewed per year (including repeat contacts) ranged from 1,535 to 1,896 between 2003 and 2009. About $90 \%$ were BC residents, with non-resident Canadians making up most of the remainder and persons from outside Canada about $1 \%$. Nakusp typically had the highest percentage of anglers from outside of the province ( $8-20 \%$ ), likely because of local charter fishing operations and hot springs resorts nearby. These results are similar to long term trends except that the percentage of non-resident Canadians was about $10 \%$ across all sites in the 1980s and early 1990s (Appendix 3).




Fig. 3. Catch of harvested and released fish by month and species at three access locations on Arrow Lakes Reservoir in 2009.


Fig. 4. Number of angler days by month at three access locations on Arrow Lakes Reservoir in 2009.

### 3.2 Angling Effort and Potential Expenditures

Total angling effort estimates for the reservoir between 2003 and 2009 ranged from 14,500 to 17,600 angler-days, and 74,000 to 89,000 rod-hours (Table 3). Using average angler-day values from the Survey of Recreational Fishing in Canada (Canada Fisheries and Oceans 2005), annual economic activity related to the ALR fishery is estimated at $\sim \$ 0.8$ million for direct expenditures (transportation, food, lodging, fishing services and equipment) and $\$ 3.0$ million including major purchases wholly or partly attributable to recreational fishing (fishing, boating and camping equipment, special vehicles, land, buildings). ${ }^{4}$ This estimate of direct expenditures is almost certainly low for ALR, because the average value in the federal survey (\$51/day) includes anglers fishing from shore and in small lakes and rivers that do not require motorized boats. The ALR survey is comprised mainly of boat anglers almost all of which require fuel for transportation to the reservoir as well as for fishing once on the water. The size of the reservoir requires boats capable of handling rough waves and reaching shelter quickly unless fishing very close to an access point.

[^3]Table 3. Three measures of estimated angling effort ( $\pm 95 \%$ confidence limits) for Arrow Lakes Reservoir from 2003 to 2009. Rod-hours are higher than angler-hours because a single angler in a boat is permitted to use up to two rods.

| Year | Angler-days | Angler-hours | Rod-hours |
| :--- | :---: | :---: | :---: |
| 2003 | $14,500( \pm 2,400)$ | $68,300( \pm 12,200)$ | $74,100( \pm 12,900)$ |
| 2004 | $17,600( \pm 3,500)$ | $83,400( \pm 16,100)$ | $89,300( \pm 17,000)$ |
| 2005 | $15,900( \pm 2,900)$ | $76,800( \pm 15,000)$ | $81,900( \pm 16,000)$ |
| 2006 | $14,600( \pm 3,000)$ | $72,600( \pm 15,100)$ | $74,700( \pm 15,500)$ |
| 2007 | $16,800( \pm 3,300)$ | $82,100( \pm 17,200)$ | $82,600( \pm 16,600)$ |
| 2008 | $15,200( \pm 3,100)$ | $69,700( \pm 13,500)$ | $72,800( \pm 13,800)$ |
| 2009 | $15,400( \pm 2,800)$ | $77,000( \pm 14,500)$ | $77,900( \pm 14,300)$ |

Long term trends at the three monitored access locations show a significant increase in angler effort at Nakusp since the beginning of the nutrient program in 1999, relatively stable effort at Shelter Bay, and a substantial decline at Castlegar (Fig. 5). Considering the three sites together, recent angler effort has been below 1987 to 1995, but higher than the years just prior to nutrient additions. Effort changes are most likely related to differences in the quality of the primary fisheries out of these locations as is discussed below by species but may also be influenced by regulation changes over this period, particularly for kokanee (section 3.3.3).


Fig. 5. Trends in annual angler days for three access locations on Arrow Lakes Reservoir from 1987 2009. Bars indicate $95 \%$ confidence limits starting in 2000. Castlegar records were not available for 1987-1989.

### 3.3 Harvest, Size Distribution, and Catch Rates

### 3.3.1 Bull Trout

Annual catch of bull trout in the reservoir ranged from 2,600 to 3,800 fish between 2003 and 2009, slightly more than half of which was retained resulting in harvest estimates of 3,300-5,400 kg/year ( $0.07-0.12 \mathrm{~kg} / \mathrm{ha}$ ) (Table 4). Longer term trends (Fig. 6) for the three sampled locations show bull trout harvest was lowest in 1989-1990 and 1999. Harvest increased sharply after the beginning of the nutrient program, peaked from 2001 to 2005 , and then declined to levels similar to the prenutrient levels (Fig. 6a). Although released fish were not recorded prior to 1998, it is likely that the percentage of fish harvested was closer to $100 \%$ in the late 1980s and early 1990s than it currently is $(50-60 \%)$. This implies that the proportional increase in catch (including kept and released fish) in the post-nutrient years could be greater than the available harvest data shows. A shift has occurred in the location of the harvest and targeted effort, with Nakusp being much more dominant in the post-nutrient years and decreases at Castlegar and Shelter Bay (Fig. 6a,b). Overall effort for bull trout has been slightly higher since 1999 for the three sites combined.

Catch rate (CPUE, HPUE; Fig. 6c) increased at the two upper basin sites (Shelter Bay and Nakusp) starting in 2001, but remained relatively stable and low at Castlegar, assuming that the majority of bull trout were retained before 1998 (i.e., assuming HPUE in early years is comparable to recent CPUE). Therefore the increased bull trout effort in the upper basin is likely related to improved catch rate there. The effort decrease in Castlegar does not seem to be related to a significant decrease in the catch rate using the available data. A CPUE of 0.06 to 0.08 fish/rod-hour in ALR (all sites combined, Table 4) equates to 12 to 16 rod-hours of effort to catch a bull trout. This is less than reported for bull trout in Revelstoke Reservoir ( 0.14 fish/rod-hour in a May to September creel survey in 2000 (Bray and Campbell 2001) ${ }^{5}$, but similar to a September to March survey on Kootenay Lake (daily range of $0.06-0.15$ fish/hour; Schwarz 2010).

Length frequency distributions of bull trout (Fig. 7) show recruitment into the fishery occurs at a length of $40-50 \mathrm{~cm}$ with most harvested fish in the $50-70 \mathrm{~cm}$ range. Shifts in size distributions since 1998 suggest changes in recruitment, mortality, and/or growth rates over the last 12 years. Average weight of retained fish is typically $2.0-2.5 \mathrm{~kg}$ with some fish over 10 kg in 2001 and 2004 (Appendix 6).

[^4]Table 4. Bull trout angler catch and harvest ( $\pm 95 \%$ confidence limits) statistics for Arrow Lakes Reservoir from 2003 to 2009.

| Year | Number Caught $^{1}$ | Number Kept ${ }^{1}$ | \% Kept | Harvest $^{2}$ <br> $(\mathbf{k g})$ | CPUE $^{3}$ <br> $(\mathbf{f i s h} / \mathbf{h})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2003 | $3,800( \pm 800)$ | $2,000( \pm 400)$ | 53 | 4,500 | 0.081 |
| 2004 | $3,400( \pm 800)$ | $2,000( \pm 500)$ | 59 | 5,400 | 0.065 |
| 2005 | $3,300( \pm 800)$ | $1,900( \pm 500)$ | 58 | 5,000 | 0.069 |
| 2006 | $3,600( \pm 900)$ | $1,800( \pm 500)$ | 51 | 4,400 | 0.075 |
| 2007 | $3,000( \pm 700)$ | $1,800( \pm 400)$ | 61 | 4,200 | 0.067 |
| 2008 | $2,600( \pm 700)$ | $1,400( \pm 400)$ | 55 | 3,300 | 0.064 |
| 2009 | $2,900( \pm 700)$ | $1,600( \pm 400)$ | 56 | 4,100 | 0.061 |

${ }^{1}$ Estimates are expanded to whole reservoir using overflight boat counts as described in Methods, therefore are higher than the sum of the three sites shown in Figure 6.
${ }^{2}$ Number kept $x$ mean weight of sampled fish.
${ }^{3}$ Three sampled locations combined.


Fig. 6. Trends in (a) fish harvested (b) targeted rod-hours, and (c) catch rate for bull trout from three access locations in Arrow Lakes Reservoir from 1987-2009. Bars around harvest estimates after 1998 indicate $95 \%$ confidence limits. Catch rate after 1998 is shown for both harvested fish only (HPUE) and for harvested and released fish combined (CPUE). Castlegar records are not available for 19871989. Data to 1997 are from MFLNRO/FWCP files and 1998-99 from Arndt (2002a).


Fig. 7. Fork length distributions of harvested bull trout from the Arrow Lakes Reservoir creel survey from 1998 to 2009.

### 3.3.2 Rainbow Trout

Annual catch of rainbow trout ranged from 3,900 to 6,400 fish over the 2003 to 2009 period, about two thirds of which was retained, resulting in a harvest by weight of $2,500-4,400 \mathrm{~kg} / \mathrm{year}(0.05-$ $0.09 \mathrm{~kg} / \mathrm{ha}$ ) (Table 5). Long term trends at the three sampled locations are similar to bull trout with a drop in harvest in the late 1990s followed by a peak in both harvest and directed effort between 2001 and 2005 (Fig. 8a,b). Recent harvest levels (three sites combined) are slightly less than 1987 to 1996, with Nakusp being the dominant location both before and after 1999 (Fig. 8a). Post-1999 rod-hours for rainbow trout in the upper basin locations (especially Nakusp) were well above the pre-nutrient years during 2001-2005 and remain so up to 2009 although they have dropped slightly (Fig. 8b). As previously mentioned, data on released fish are not available prior to 1998, but it is likely that the percentage of fish harvested was closer to $100 \%$ in the late 1980s and early 1990s than it currently is ( $65-75 \%$ ). This implies that the total rainbow trout catch in the post-nutrient years (including kept and released fish) might be more similar to the pre-nutrient period than harvest trends show.

Interestingly, catch rates for rainbow trout have decreased in the post-nutrient years for the Nakusp site from $\sim 0.15$ to 0.05 fish/rod-hour (Fig. 8c), while rainbow-directed rod-hours have increased (Fig. 8b). The other two locations have remained relatively stable at $0.03-0.08$ fish/rod-hour except for a peak in 2000-2001 (Fig. 8c). Catch rates for the three sites combined (Table 5) are similar to Revelstoke Reservoir where rainbow trout CPUE was 0.07 fish/hour in 2000 (Bray and Campbell 2001). ${ }^{6}$ The lack of a relationship between rainbow trout catch rate and directed fishing effort, particularly in Nakusp, is probably because the available data cannot distinguish between effort targeted at piscivorous rainbow trout and effort for the smaller ecotype. Catch rates for the larger ecotype are typically much lower than for the smaller fish; therefore an increase in piscivore catch (such as occurred from 2002-2005, see below) can stimulate a significant increase in directed effort for the species, which lowers overall catch rate.

Length frequency distributions (Fig. 9) show recruitment to the fishery begins at a length of 20 cm with most harvested fish in the $30-45 \mathrm{~cm}$ range. Average weight of retained fish is typically 0.6 1.0 kg with some exceeding 10 kg in 2004 (Appendix 6b).

[^5]Table 5. Rainbow trout angler catch and harvest ( $\pm 95 \%$ confidence limits) statistics for Arrow Lakes Reservoir from 2003 to 2009.

| Year | Number Caught $^{1}$ | Number Kept $^{1}$ | \% Kept | Harvest $^{2}$ <br> $(\mathbf{k g})$ | CPUE $^{3}$ <br> (fish/h) |
| :--- | :--- | :--- | :---: | :---: | :---: |
| 2003 | $3,900( \pm 1,000)$ | $2,800( \pm 900)$ | 72 | 3,200 | 0.056 |
| 2004 | $6,400( \pm 1,500)$ | $4,200( \pm 1,200)$ | 66 | 4,400 | 0.064 |
| 2005 | $5,100( \pm 1,500)$ | $3,300( \pm 1,100)$ | 64 | 3,200 | 0.063 |
| 2006 | $5,400( \pm 1,500)$ | $3,600( \pm 1,200)$ | 67 | 2,500 | 0.067 |
| 2007 | $5,400( \pm 1,100)$ | $3,800( \pm 1,000)$ | 71 | 2,600 | 0.076 |
| 2008 | $5,000( \pm 1,600)$ | $3,700( \pm 1,400)$ | 74 | 3,300 | 0.073 |
| 2009 | $4,500( \pm 1,100)$ | $3,200( \pm 800)$ | 71 | 3,000 | 0.060 |

${ }^{1}$ Estimates are expanded to whole reservoir using overflight boat counts as described in Methods and are therefore higher than the sum of the three sites shown in Figure 8.
${ }^{2}$ Number kept x mean weight of sampled fish.
${ }^{3}$ Three sampled locations combined.


Fig. 8. Trends in the (a) number of fish kept, (b) directed rod-hours, and (c) catch rate for rainbow trout from three access locations in Arrow Lakes Reservoir from 1987-2009. Bars around harvest estimates after 1998 indicate $95 \%$ confidence limits. Catch rate after 1998 is shown for both harvested fish (HPUE) and for harvested and released fish combined (CPUE). Castlegar records are not available for 1987-1989. Data to 1997 are from MFLNRO/FWCP files and 1998-99 from Arndt (2002a).


Fig. 9. Fork length distributions of harvested rainbow trout from the Arrow Lakes Reservoir creel survey from 1998 to 2009.

## Piscivorous ecotype

Annual numbers of sampled rainbow trout $>50 \mathrm{~cm}$ provide an index of piscivorous rainbow trout harvest at the three sampled sites (Fig. 10). Since contract-stipulated collection of length data began in 1998, there is just one year prior to the nutrient program for this direct comparison. A longer term, but perhaps less certain, trend was developed for the Nakusp site by combining 1997-2009 creel weight records with weigh-in records kept at the local tackle store from 1977 to 1995 (MFLNRO/FWCP file data). The older records represent fish brought voluntarily to the store for weighing, which was open from 8:30 AM to 5:30 PM seven days weekly except for Sunday afternoons from mid-November through January or February when it closed around noon. ${ }^{7}$ The 1997-2009 creel data are from 60 sampled days per year monitored from 2 hours after sunrise to a half hour after sunset (Section 2.1). In an attempt to make the two datasets roughly comparable, the creel data were expanded to a full year by the ratio of $365 / 60$ sampled days (Fig. 11). This equalizes the number of days sampled, however, given the shorter "sampled" day length and voluntary aspect of the store records, counts for these years are likely underestimated to some degree in relation to the expanded creel data.

The post-nutrient harvest trend for piscivorous rainbow trout was similar to bull trout, with a sharp increase starting the third year of the nutrient program, peak years from 2002 to 2004, a decline to 2007, followed by a return to intermediate levels (Figs. 10, 11). The longer term graph (Fig. 11) shows cycles in piscivore harvest occurred both before and after the nutrient program. Fish over 9 $\mathrm{kg}(20 \mathrm{lb})$ are recorded in both periods, and catches of the largest fish occurred mainly in years of higher harvest. Numbers in the nutrient period exceeded the 1997 and 1998 pre-nutrient samples for most years after 2001, and harvest during the 2002-2004 peak years was probably the highest in the last 3 decades (Fig. 11). A crude estimate of $>50 \mathrm{~cm}$ rainbow harvest for 2003-2009 would be in the range of 200 to 500 fish annually. ${ }^{8}$ Lindsay (1991, cited by Sebastian et al. 2000) estimated an annual harvest of about 100 fish $>2.3 \mathrm{~kg}(5 \mathrm{lb})$ in 1989.

[^6]

Fig. 10. Number of rainbow trout greater than 50 cm sampled at three access locations during the Arrow Lakes creel survey from 1998 to 2009. Length data are not available for all sites prior to 1998.


Figure 11. Number of rainbow trout weighed at Nakusp by size category from 1977 to 2009. Data up to 1995 are from weigh-in records at the local tackle store and later years are from creel survey data expanded to a full year. See text for further explanation. Imperial units are used to be comparable to the older records.

### 3.3.3 Kokanee

Annual catch of kokanee (3,200-15,100) and percent retained varied widely over the 2003-2009 period, leading to harvest by weight estimates from 300 to $1,800 \mathrm{~kg}(0.006-0.039 \mathrm{~kg} / \mathrm{ha})$ (Table 6). Long term trends at the three sampled locations show post-nutrient harvest to be about a tenth of most pre-nutrient years shown in Figure 12, although it should be noted that kokanee effort and numerical harvest were much higher starting in the mid 1980s than they were in the 1970s (Lindsay 1986; Sebastian et al. 2000). Harvest at all locations was already substantially reduced by 1997 (two years prior to the nutrient program) but declined even further in following years. Largest declines occurred in Castlegar and to a lesser extent Nakusp. Shelter Bay has not had a strong kokanee fishery at any time in the last 25 years. Harvested kokanee from 2003-2009 comprise a very minor component ( $<1 \%-3.6 \%$ ) of the adults in ALR when compared to index stream spawner counts (MOE/FWCP file data) for the same year.

Kokanee directed effort also decreased substantially in the post-nutrient period, with the exception of 2001 in Nakusp (Fig. 12b). Size of kokanee was larger that year with about half of the harvest exceeding 25 cm in length (Fig. 13). These larger kokanee provided a strong incentive for kokanee angling and targeted effort that year increased to nearly 10,000 rod-hours, more than double the pre1999 average for Nakusp. An increase in Castlegar effort in 2007 (Fig. 12b) also corresponds to a size shift towards larger fish (Fig. 13).

Catch rates declined substantially at all locations during the post nutrient period (Fig. 12c). Recent CPUE of less than 0.6 fish/hour is similar to a 2000 survey on Revelstoke Reservoir ( 0.30 fish/hour) ${ }^{9}$, however, the average size of Revelstoke fish was much larger ( $309 \mathrm{~mm}, 357 \mathrm{~g}$ ) and about $90 \%$ of Revelstoke rod-hours were targeting kokanee (Bray and Campbell 2001).

Kokanee in ALR are retained starting at a length of $18-20 \mathrm{~cm}$ depending on the year. In some years, there appears to be two year classes represented in the harvest (Fig. 13). Overall there was a positive relationship between kokanee effort and kokanee size (Fig. 14), but no correlation between rodhours of effort and CPUE ( $\mathrm{R}=0.08, \mathrm{p}>0.80$ ). Thus the decrease in kokanee angling effort in recent years appears to be at least partially related to a decrease in kokanee size. The opposite has occurred previously in ALR, as Lindsay (1986) observed a sharp increase in upper Arrow kokanee fishing associated with increases in average size of retained fish starting in 1984 ( 24.6 cm ) and 1985 (27.5 cm ). Reductions in daily catch limits may also have an important influence on kokanee effort and harvest, particularly when fish are smaller. Daily harvest limits were reduced from 15 fish to 10 in 1995, and from 10 to 5 in 2000 (D. Sebastian, MFLNRO, pers. comm.).

[^7]Table 6. Kokanee angler catch and harvest ( $\pm 95 \%$ confidence limits) statistics for Arrow Lakes Reservoir from 2003 to 2009.

|  | Number Caught $^{1}$ | Number Kept |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | \% Kept | Harvest $^{2}$ <br> $(\mathbf{k g})$ | CPUE $^{3}$ <br> $(\mathbf{f i s h} / \mathbf{h})$ |  |
| 2003 | $3,800( \pm 1,100)$ | $2,800( \pm 900)$ | 73 | 300 | 0.357 |
| 2004 | $15,100( \pm 4,600)$ | $8,600( \pm 2,400)$ | 57 | 1,300 | 0.558 |
| 2005 | $11,400( \pm 4,200)$ | $6,800( \pm 2,700)$ | 59 | 1,200 | 0.476 |
| 2006 | $3,200( \pm 1,300)$ | $2,300( \pm 900)$ | 73 | 500 | 0.140 |
| 2007 | $11,800( \pm 3,400)$ | $9,000( \pm 2,600)$ | 76 | 1,800 | 0.375 |
| 2008 | $6,000( \pm 2,200)$ | $5,200( \pm 1,800)$ | 87 | 1,100 | 0.243 |
| 2009 | $8,200( \pm 2,200)$ | $5,800( \pm 1,500)$ | 71 | 1,100 | 0.391 |

${ }^{1}$ Estimates are expanded to whole reservoir using overflight boat counts, and therefore are higher than the sum of the three sites in Figure 12.
${ }^{2}$ Number kept x mean weight of sampled fish
${ }^{3}$ Three sampled locations combined.


Fig. 12. Trends in (a) number of fish kept, (b) directed rod-hours, and (c) catch rate for kokanee anglers from three access locations in Arrow Lakes Reservoir from 1987-2009. Bars around harvest estimates after 1998 indicate $95 \%$ confidence limits. Catch rate after 1998 is shown for both harvested fish (HPUE) and including released fish (CPUE). The kokanee season was closed in the upper basin (Shelter Bay, Nakusp) in 1999 and 2000.


Fig. 13. Fork length distributions of harvested kokanee from the Arrow Lakes Reservoir creel survey from 1998 to 2009. Samples for 1998 and 2001 are all from the upper basin. Data are not available for 1999 and 2000.


Fig. 14. Relationship between the amount of kokanee-directed fishing effort (Castlegar, Nakusp, and Shelter Bay combined) and mean length of harvested kokanee in Arrow Lakes Reservoir from 1998 to 2009 .

### 3.3.4 Burbot

Burbot angling was recorded in all months at low levels for the Nakusp access during 2003-2009 but very rarely at the other monitored access locations, even though the species is widely distributed in the reservoir and abundant at other locations (Arndt and Baxter 2006). Annual catch estimates for 2003-2009 ranged from 500 to 750 fish with about $80 \%$ or more retained; wide confidence limits are due to the low number of burbot reported. Harvest by weight was fairly stable at $700-1000 \mathrm{~kg}$ (Table 7).

Longer term trends suggest a possible decrease in harvest (Fig. 15a) from the late 1980s to 1997, followed by an increase to the current relative stability. Reported burbot effort has also increased substantially since 1999 (Fig. 15b), whereas catch rate may have decreased (Fig. 15c). These trends should be interpreted with caution. It is possible that non-successful burbot anglers did not report their targeted species in earlier years, which would lead to an overestimation of catch rate and underestimation of effort. Even in recent years, some burbot harvest occurs for parties that report fishing for "anything". Catch rates of slightly less than 0.5 fish/rod-hour are fairly similar to those for burbot in other lakes of Kootenay Region (Table 8). Available size data suggest relatively stable recruitment to the population near Nakusp, with the majority of harvested fish being between 55 and 70 cm (Fig. 16). Burbot harvest (kg/ha) in Arrow Lakes Reservoir is relatively low in comparison to other lakes (Table 9). Fall trapping in the narrows area where most of the angling occurs had average catch rates (number of burbot/overnight trap set) of 4.5 in 2003 and 8.5 in 2004 (Arndt and Baxter 2006), but around 1.0 for sets in 2008 and 2010 (Glova et al. 2009, Robichaud et al. 2011).


Fig. 15. Trends in the (a) number of fish kept, (b) directed rod-hours, and (c) catch rate for burbot anglers from Nakusp access location in Arrow Lakes Reservoir from 1987-2009. Bars around harvest estimates after 1998 indicate $95 \%$ confidence limits. Catch rate after 1998 is shown for both harvested fish (HPUE) and including released fish (CPUE).

Table 7. Estimated number of burbot caught and retained ( $\pm 95 \%$ confidence limits), percentage of fish kept, and harvested weight for Arrow Lakes Reservoir from 2003 to 2009.

| Year | Number Caught $^{1}$ | Number Kept $^{1}$ | \% Kept | Harvest $^{2}$ <br> $(\mathbf{k g})$ |
| :---: | :---: | :---: | :---: | :---: |
| 2003 | $740( \pm 370)$ | $660( \pm 370)$ | 89 | 1,050 |
| 2004 | $470( \pm 300)$ | $450( \pm 310)$ | 95 | 800 |
| 2005 | $390( \pm 210)$ | $370( \pm 200)$ | 95 | 720 |
| 2006 | $520( \pm 380)$ | $520( \pm 380)$ | 100 | 870 |
| 2007 | $480( \pm 330)$ | $470( \pm 340)$ | 96 | 790 |
| 2008 | $580( \pm 380)$ | $450( \pm 280)$ | 79 | 710 |
| 2009 | $580( \pm 490)$ | $460( \pm 330)$ | 78 | 710 |

${ }^{1}$ Estimates are expanded to whole reservoir using overflight boat counts, and therefore are higher than in Figure 15.
${ }^{2}$ Number kept x mean weight of sampled fish

Table 8. Burbot catch rate comparison from creel surveys in four Kootenay Region Lakes.

| Lake | Years | CPUE (fish/hr) | Season |
| :--- | :--- | :--- | :--- |
| Arrow Reservoir | $2003-2009$ | $0.30-0.45$ | All year |
| Columbia Lake $^{1}$ | $1995-2001$ | $0.08-0.44$ | Winter |
| Windermere Lake $^{1}$ | $1996-1997$ | $0.43-0.44$ | Winter |
| Moyie Lake $^{2}$ | 2002 | $0.24-0.50$ | Winter |
| Kootenay Lake West Arm $^{3}$ | $1967-1976$ | $0.28-1.48$ | February to June |

${ }^{1}$ Arndt (2002b)
${ }^{2}$ Westover (2007), Prince and Cope (2008), Neufeld and Spence 2009)
${ }^{3}$ Martin (1976)

Table 9. Comparison of Arrow Lakes Reservoir burbot harvest to other North American lakes.

| Lake | Size (ha) | Harvest |  | Period Measured |
| :--- | :---: | :--- | :--- | :--- |
|  |  | Fish/ha | Kg/ha |  |
| Arrow Lakes Reservoir | 46,450 | $0.007-0.014$ | $0.015-0.022$ | $2003-2009$ |
| Columbia Lake, BC ${ }^{1}$ | 2,574 | $0.02-0.19$ | $0.02-0.15$ | $1995-2001$ |
| North basin Moyie Lake, BC $^{2}$ | 583 | $0.25-0.62$ | $0.42-1.00$ | $2007-2009$ |
| Windermere Lake, BC $^{1}$ | 1,584 | 0.020 | 0.010 | $1996-1997$ |
| Moosehead Lake, Maine ${ }^{3}$ | 30,308 | $0.07-0.23$ | $0.03-0.17$ | $1985-1999$ |
| Moose/Tulsona Lakes, Alaska ${ }^{4}$ | 260 | $0.08-2.63$ | NA | $1987-1997$ |
| Susitna/Tyone Lakes, Alaska ${ }^{4}$ | 4,205 | $0.01-0.18$ | NA | $1987-1997$ |
| Lake Louise, Alaska ${ }^{4}$ | 6,519 | $0.04-0.15$ | NA | $1987-1990$ |
| Harding Lake, Alaska | 1,000 | $0.00-0.42$ | NA | $1983-1998$ |

${ }^{1}$ Arndt (2002b); ${ }^{2}$ Westover 2007, Prince and Cope 2008, Neufeld and Spence 2009; ${ }^{3}$ Quinn (2000); ${ }^{4}$ Taube (2000); ${ }^{5}$ Doxey (2000)










Fig. 16. Length frequency distributions of burbot angled in Arrow Lakes Reservoir from 1998 to 2009.

### 3.4 Piscivore Condition Trends and Implications

Calculation of piscivore condition allows testing of important unknowns related to creel survey interpretation and the success of the nutrient and spawning channel programs. First, the close relationship between $K_{n}$ of bull trout and piscivorous rainbow trout (Fig. 17) supports the premise that $K_{n}$ is a valid indicator of feeding conditions for apex predators feeding on kokanee in ALR. Second, $K_{n}$ showed positive relationships to catch rate, total catch, and catch of larger fish (e.g., $>5$ kg ) for both apex species (Fig. 18). This has two relevant implications. One, it supports the notion that angler catch rate and harvest trends are generally valid indices of predator population abundance. If catch rates were dominated by mechanisms where predators were more vulnerable to angling during periods of low prey availability, an inverse relationship would be expected between fishing success and $K_{n}$. This is clearly not the case for the ALR fishery. If there is indeed a positive relationship between $K_{n}$ and predator abundance, it implies that recruitment and survival of piscivorous rainbow trout and bull trout may be strongly influenced by suitable feeding conditions in the reservoir (section 4.0).


Fig. 17. Comparison of annual mean relative condition factor $\left(K_{n}\right)$ for bull trout and rainbow trout over 50 cm in Arrow Lakes Reservoir from 1996 to 2009.


Fig. 18. Graphs showing positive relationships between mean annual condition factor ( $K_{n}$ ) and catch rate (top row), total catch (middle row), and catch of larger fish (bottom row) for bull trout and piscivorous rainbow trout from Arrow Lakes Reservoir 1998-2009. Middle plots used the expanded catch estimate for bull trout, and sampled fish $>50 \mathrm{~cm}$ for rainbow trout (data not available on released fish). Lower plots are sampled catch.

### 3.4.1 Trends

Average $K_{n}$ of bull trout increased rapidly after 1999, peaking in 2004, when fish averaged $20 \%$ heavier than the pre-nutrient period; this was followed by a decline back to levels similar to the prenutrient era from 2006 to 2008, and another increase in 2009. Trends for larger bull trout were slightly more extreme, showing a more extended and higher peak from 2001 to 2004, and a lower average during periods of poorer condition (Fig. 19). Condition of larger fish would be expected to be more closely tied to kokanee population dynamics from a bioenergetics perspective (Kerr 1971a). Piscivorous rainbow trout trends were similar to bull trout with peak years from 2002 to 2005 followed by a reduction to levels closer to the pre-nutrient years (Fig.20). The $K_{n}$ trends for both species also correspond to harvest trends shown earlier (Figs. 6, 10). Overall, these results indicate the best feeding conditions for apex predators in ALR occurred during the early years of the nutrient program from 2001 to 2005.


Fig. 19. Mean annual condition factor $\left(K_{n}\right)$ relative to the average pre-nutrient weight $\left(K_{n}=1\right)$ for all bull trout ( $\pm 95 \%$ confidence limits), and for bull trout over 60 cm in Arrow Lakes Reservoir from 1991 to 2009. Sample ranged from 33 to 267.


Fig. 20. Mean annual ( $\pm 95 \%$ confidence limits) condition factor $\left(K_{n}\right)$ relative to the average weight of pre-nutrient fish ( $K_{n}=1$ ) for piscivorous rainbow trout in Arrow Lakes Reservoir from 1994 to 2009. Numbers indicate sample size.

### 3.4.2 Relationship to Kokanee Population

Growth efficiency in fish is a function of prey density, size, and energy content (Kerr 1971a, Stewart and Ibarra 1991, Rand and Stewart 1998). To investigate the prey conditions that provide best feeding opportunities for piscivores, $K_{n}$ was first plotted versus measures of ALR kokanee abundance and size/age structure from other studies. Neither kokanee density nor biomass (all age classes combined) appeared to have a positive relationship to predator condition since the commencement of the nutrient program (Fig. 21, top two rows). However, a positive relationship was found between $K_{n}$ and a measure of the abundance of kokanee large enough to spawn, producing a nearly identical curve for both species $\left(\mathrm{r}^{2}=0.73\right.$ and 0.60 for bull and rainbow trout respectively; Fig. 21, bottom row). This relationship was stronger using the upper Arrow spawner index than using all ALR index streams (not shown) as would be expected given that the majority of $K_{n}$ samples came from the upper basin.

In most years, kokanee spawners in ALR are primarily age $3+$ (Sebastian et al. 2000). To test the $K_{n}$ relationship to the kokanee cohorts at age $2+, K_{n}$ values were lagged by one year and plotted against the index stream spawner counts in Figure 21 (e.g., $K_{n}$ in 2008 was compared to 2009 index spawner returns). This produced positive relationships for both species but with lower $\mathrm{r}^{2}$ values of 0.43 and 0.42 respectively (graphs not shown). Therefore in this preliminary analysis, optimal feeding conditions for apex predators appear to be most closely related to high abundance of the spawning size class of kokanee.


Fig. 21. Relationships between bull trout and piscivorous rainbow trout condition $\left(K_{n}\right)$ and kokanee population structure. Kokanee data in top four panels are from fall hydroacousic surveys (Ministry of Environment/FWCP file data), and in the lower panel from counts of spawners in five index streams in the upper basin of Arrow Lakes reservoir.

Effect of prey size on $K_{n}$ was further investigated using linear and quadratic models and AIC rankings as described in Methods (Section 2.3.4). For bull trout, the majority of AIC ${ }_{c}$ model weight (more than 0.60 ) was placed on the model using only the single predictor of upper Arrow spawner abundance index for both the mean and median yearly condition factor. The remaining model
weight was fairly evenly spread over the other models in the set. Hence this analysis did not support a kokanee size effect on bull trout after accounting for spawner abundance.

For rainbow trout, different models were selected using $\mathrm{AIC}_{\mathrm{c}}$ depending on whether it was predicting the mean or median $K_{n}$. For mean $K_{n}$, the majority of model weight (.53) was placed on the model using the single predictor of upper Arrow spawner abundance index (i.e., a size effect was not supported). However a different model (including spawner abundance index in all Arrow index streams and a quadratic effect of size) was selected for the median condition factor (model weight 0.74 ). In this case the quadratic term supports a dome-shaped relationship to kokanee size after accounting for spawner abundance, as illustrated in Figure 22. In summary, for rainbow trout there was some support for a prey size effect after accounting for spawner abundance with an optimal spawner size of approximately 23 cm . The evidence was not conclusive with the available data, but may warrant further investigation. Since optimal prey size increases with predator size (Kerr 1971a), some of the variance in the $K_{n}$ to prey size relationships may be due to annual differences in the size distributions of the predator species; future investigations should consider doing separate analyses for different size categories if sample size is adequate (e.g., He et al. 2008).


Fig. 22. Residuals from linear regressions using Arrow Lake kokanee spawner abundance to predict annual median $K_{n}$ of bull trout and piscivorous rainbow trout plotted versus the average size of kokanee spawners in Hill Creek spawning channel. The horizontal line at zero indicates the $K_{n}$ predicted by kokanee spawner abundance.

### 3.5 Hatchery Contribution to the Fishery

Annual percentages of clipped fish in the creel were less than $1 \%$ for most years 2003 to 2009 (Table 10). Potential year of stocking is listed in Table 11. Some reported clips are questionable because there was no recent match in the stocking records. Maxillary clips (LM and RM) have not been used since 1997. If these are considered to be deformities or hooking injuries, only three rainbow trout and six bull trout of hatchery origin were sampled over the seven year period ( $\mathrm{n} \approx$ 2,500 and 1,700 respectively). Low percentages of marked bull trout are consistent with results from previous years, indicating very low survival of stocked fish after release. In pre-nutrient tagging studies (1975-1996), overall recovery of tagged bull trout was $11 \%$ while overall recapture of hatchery produced bull trout was much lower at <2\% (Sebastian et al. 2000). Clipped bull trout have not been reported since 2006 (Table 10) signifying that the last releases from Hill Creek hatchery are no longer at large.

Over 125,000 yearling Gerrard strain (piscivorous) rainbow trout have been released in the reservoir since 2005 (provincial stocking records). Only two fish with adipose clips matching stocking records have been recorded in the samples (and one fish with an adipose and possibly misidentified RM clip) indicating negligible contributions to the fishery in recent years. In some pre-nutrient years, clip percentages of over $20 \%$ were reported for rainbow trout $>2.3 \mathrm{~kg}$ (Sebastian et al. 2000), although the total catch of piscivorous rainbows in those years was lower than from 2001 to 2005. Clip percentages in these larger fish decreased to $18 \%$ in 1998-1999 (Arndt 2002a) and $6 \%$ in 20002002 (Arndt 2004a). The large increase in harvest of unclipped piscivorous rainbows between 2001 and 2005 (Figs. 10, 11) suggests natural production was providing reasonably good recruitment at that time (Arndt 2004a).

Table 10. Summary of the number and percent (upper $95 \%$ confidence limit) of hatchery-clipped bull trout and rainbow trout in Arrow Lakes Reservoir creel samples from 2003 to 2009. All reported clips are included in totals, although some do not match marks listed in stocking records and may be natural deformities or injuries. See Table 11 and text for further explanation.

|  |  | Bull Trout |  |  |  | Rainbow Trout |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Clipped Fish | Shelter Bay | Nakusp | Castlegar | Total | Shelter Bay | Nakusp | Castlegar | Total |
| 2003 | $\begin{aligned} & \text { Number } \\ & \% \end{aligned}$ | $\begin{gathered} 3 \\ 3.5 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 1.4 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 5 \\ 2.0(5) \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0(2) \\ \hline \end{gathered}$ |
| 2004 | $\begin{array}{\|l} \begin{array}{l} \text { Number } \\ \% \end{array} \\ \hline \end{array}$ | $\begin{gathered} 1 \\ 1.1 \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 0.7 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 0.7(3) \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 2.6 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 0.5(2) \\ \hline \end{gathered}$ |
| 2005 | $\begin{array}{\|l\|} \begin{array}{l} \text { Number } \\ \% \end{array} \\ \hline \end{array}$ | $\begin{gathered} 0 \\ 0.0 \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \end{gathered}$ | $\begin{gathered} 0 \\ 0.0(2) \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \end{gathered}$ | $\begin{gathered} 1 \\ 0.6 \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \end{gathered}$ | $\begin{gathered} 1 \\ 0.3(2) \\ \hline \end{gathered}$ |
| 2006 | $\begin{aligned} & \text { Number } \\ & \% \end{aligned}$ | $\begin{gathered} 1 \\ 1.0 \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 0.9 \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 0.8(4) \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 1.8 \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 0.9 \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \end{gathered}$ | $\begin{gathered} 3 \\ 0.8(2) \\ \hline \end{gathered}$ |
| 2007 | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Number } \\ \% \end{array} \\ \hline \end{array}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0(2) \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 1.1 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 0.5(2) \\ \hline \end{gathered}$ |
| 2008 | $\begin{aligned} & \text { Number } \\ & \% \end{aligned}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0(2) \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 1.1 \\ \hline \end{gathered}$ | $\begin{gathered} 7 \\ 5.0 \\ \hline \end{gathered}$ | $\begin{gathered} 1 ? \\ 1.0 ? \\ \hline \end{gathered}$ | $\begin{gathered} 9 \\ 2.7(6) \\ \hline \end{gathered}$ |
| 2009 | $\begin{aligned} & \text { Number } \\ & \% \end{aligned}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0(2) \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 0.8 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.0 \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 0.3(1) \\ \hline \end{gathered}$ |

Table 11. Sample location, reported clip, possible year of stocking and length of marked fish in 2003 to 2009 creel surveys on ALR. All rainbow trout after 1997 have been Gerrard stock. Clips are as follows: $\mathrm{AD}=$ adipose; $\mathrm{ALM}=$ adipose/left maxillary; $\mathrm{ARM}=$ adipose/right maxillary; RM=right maxillary; LM=left maxillary. Maxillary clips (LM and RM) may be misidentified deformities or injuries. Stocking records were obtained at http://a100.gov.bc.ca/pub/fidq/ main.do.

| Year Captured | Sample <br> Location | Clip | Recent Years Clip Used | Fork Length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| Bull Trout |  |  |  |  |
| 2003 | Shelter Bay | LM | No match | 55 |
|  | Shelter Bay | ARM | 1996, 1999 | 52.5 |
|  | Shelter Bay | ARM | 1996, 1999 | 50 |
|  | Nakusp | AD | 1994, 1998 | 54 |
|  | Nakusp | ARM | 1996, 1999 | 62 |
| 2004 | Shelter Bay | ALM | 1997, 1999 | 76 |
|  | Nakusp | LM | No match | 58 |
| 2006 | Shelter Bay | ARM | 1996, 1999 | 71 |
|  | Nakusp | LM | No match | 61 |
| Rainbow Trout |  |  |  |  |
| 2004 | Shelter Bay | ARM | No match | 40 |
|  | Shelter Bay | LM | 1997 | 62 |
| 2005 | Nakusp | RM | 1996 | 45 |
| 2006 | Shelter Bay | AD | 2005, 1996 | 30 |
|  | Shelter Bay | LM | 1997 | 45 |
|  | Nakusp | RM | 1996 | 40 |
| 2007 | Nakusp | LM | 1997 | 39 |
|  | Nakusp | LM | 1997 | 35.5 |
| 2008 | Shelter Bay | RM | 1996 | 34 |
|  | Nakusp | AD | 2005, 2006 | 56 |
|  | Nakusp | RM \& LM | No match | 39 |
|  | Nakusp | LM | 1997 | 39 |
|  | Nakusp | LM | 1997 | 40.5 |
|  | Nakusp | LM | 1997 | 40 |
|  | Nakusp | RM | 1996 | 32 |
|  | Nakusp | RM | 1996 | 50 |
| 2009 | Nakusp | RM | 1996 | 35 |

### 4.0 CONCLUSIONS

## Benefits of the Fishery

From 2003 to 2009 , ALR supported approximately 15,500 angler days annually, providing important recreational opportunities for local residents and others, and contributing approximately $\$ 1$ million in direct expenditures to the local and provincial economy. About 10 tonnes of fish were harvested for food each year (Table 12).

Table 12. Summary of fish harvest from Arrow Lakes Reservoir from 2003 to 2009.

| Year | Annual Harvest by Species |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bull Trout |  | Rainbow Trout |  | Kokanee |  | Burbot |  | Total |  |
|  | Number | kg |
| 2003 | 2,000 | 4,500 | 2,800 | 3,200 | 2,800 | 300 | 700 | 1,100 | 8,200 | 9,100 |
| 2004 | 2,000 | 5,400 | 4,200 | 4,400 | 8,600 | 1,300 | 400 | 800 | 15,300 | 12,000 |
| 2005 | 1,900 | 5,000 | 3,300 | 3,200 | 6,800 | 1,200 | 400 | 700 | 12,300 | 10,100 |
| 2006 | 1,800 | 4,400 | 3,600 | 2,500 | 2,300 | 500 | 500 | 900 | 8,300 | 8,200 |
| 2007 | 1,800 | 4,200 | 3,800 | 2,600 | 9,000 | 1,800 | 500 | 800 | 15,100 | 9,400 |
| 2008 | 1,400 | 3,300 | 3,700 | 3,300 | 5,200 | 1,100 | 500 | 700 | 10,900 | 8,400 |
| 2009 | 1,600 | 4,100 | 3,200 | 3,000 | 5,800 | 1,100 | 500 | 700 | 11,100 | 8,900 |

## Fishery Trends since the Nutrient Program

The success of the compensation initiatives in terms of the fishery is mixed when post-nutrient years are compared to the 1987-1998 period. Success varies by species, access location, and over time. The kokanee fishery, already substantially reduced when the nutrient program started, continued to decline by all measures (harvest, catch rate, targeted effort) with the exception of a brief increase in Nakusp in 2001. Once a major component of ALR angling, especially in the lower basin near Castlegar, kokanee fishing has declined to about $20 \%$ of the total effort in the reservoir. In contrast, harvest and targeted effort for bull trout and rainbow trout (all sizes) increased shortly after the beginning of the nutrient program, remained high until 2005, and then declined. Recent harvests of these species appear to be similar or slightly below the 1987-1998 period. Piscivorous rainbow trout harvest peaked from 2002-2004 (Figs. 10,11); after which it declined and then returned to an intermediate level. Spatially, the Nakusp access point has benefited the most for bull trout and rainbow trout fishing. Burbot catch has remained low but reported angler effort has increased. This may be partly due to a reduction in the regional catch limit from five to two fish in 2003 (i.e., more trips are needed for a local angler to harvest the same number of fish).

Changes in angler effort and harvest estimates at the sampled sites since 1999 are unlikely to be related to large scale shifts of angler access to other locations. Although overflight boat counts observed higher than expected activity in the north part of the lower basin on some fair weather days, the percentage of boats in locations far from our sampled points was not large enough to substantially influence the site results (Section 3.0, first paragraph). Furthermore, there were no significant changes in the number or quality of boat ramps during the last decade that would cause a shift in the preferred angler access. This may change in the near future as a result of new BC Hydro Water Licence Requirement initiatives. Work on new and upgraded ramps will begin in 2010
(Columbia River Water Use Plan Update, April 2010) and future creel survey designs will need to consider this.

Overharvest seems unlikely to be a primary cause of recent declines in piscivorous rainbow trout and bull trout catch, because $K_{n}$ would be expected to be high when catch rate was low if overharvest was driving abundance down (i.e., kokanee prey supply would increase in relation to predator demand). As noted earlier, data show the opposite to be the case; piscivore catch rate and $K_{n}$ declined together. Also, high numbers of clipped Gerrard rainbow trout were released during this period with negligible returns to the fishery. If catch was strongly limited by natural recruitment overfishing these stocked fish might be expected to survive at a higher rate, taking the place of natural recruits.

## Relationships between Angler Use and Fish Populations

Historical data for ALR indicate the potential for a much larger kokanee fishery than at present. Kokanee effort in ALR appears to be strongly influenced by the presence of larger fish (Fig. 14), and decreased effort may be related to a decrease in size of kokanee since the mid-1980s (Lindsay 1986) and early 1990s. (Unfortunately, data on size of retained kokanee are not available for most of the pre-nutrient years.) The notable reduction in kokanee catch rate since then implies lower fish size because vulnerability of kokanee to angling declines in smaller fish (Rieman and Maiolie 1995). Although records of average spawner size at Hill Creek Spawning Channel and size at age data from trawl surveys do not indicate a sustained size reduction since nutrients began (MFLNRO file data, D. Sebastian, pers. comm.), the actual size of harvested fish remains uncertain; trawl and spawner averages may not be reliable surrogates for harvest size given angler selection for, and greater vulnerability, of larger fish to angling. ${ }^{10}$ As previously noted, a reduction in daily kokanee quotas may also be an important contributor to reduced effort, particularly when fish are small, as anglers are likely more inclined to seek smaller fish if they are allowed to retain a higher number.

Size of kokanee is related positively to lake productivity and inversely to fish density (Rieman and Myers 1992). Productivity of ALR at lower trophic levels and average kokanee densities have increased since the beginning of the nutrient program (Schindler et al. 2006), therefore a decrease in kokanee size in some years since 1999 is likely related to the increase in density. In Okanagan Lake, a decline in kokanee size and catch success concurrent with a doubling in density was noted between 1982 and 1992 (Shepherd 1994). Since Hill Creek Spawning Channel has the potential to have a strong influence on kokanee densities in the reservoir, there may be opportunities to modify fry output to approach a more optimal density for angling and prey supply. Rieman and Maiolie (1995) found a dome shaped curve when kokanee density was plotted versus angling yield for lakes and reservoirs in Oregon and Idaho with angling quality declining after the optimum density was exceeded.

Condition factor $\left(K_{n}\right)$ appears to be a useful indicator of feeding conditions for apex predators, and was positively related to angling quality for these species (Section 3.4). Therefore it could be a valuable metric for evaluating the impacts of compensation initiatives, management decisions, and dam operations on angling quality (also see He et al. 2008). High condition factor is typically

[^8]associated with high growth rates (Anderson and Neumann 1996, Arndt et al. 1996), so it is not surprising that high $K_{n}$ would be associated with high recruitment into the catchable population, as seems to be the case in ALR. Increased survival after spawning may also be a mechanism contributing to increased catch rates of larger fish during periods of high $K_{n}$.

## Post-Nutrient Feeding Conditions and Predator-Prey Relationships

Trends in $K_{n}$ indicate inconsistent transfer of nutrient benefits to upper trophic levels of the reservoir. Total density or biomass of all age classes of kokanee do not appear to be good indicators of feeding conditions for apex predators. However, preliminary analyses show a positive relationship between annual $K_{n}$ and the abundance of kokanee large enough to spawn, and there is some evidence for piscivorous rainbows of an optimal kokanee size after accounting for spawner abundance (Fig. 22). Sebastian et al. (2000) state that bull trout in ALR seldom prey upon kokanee fry or yearlings but rather show a strong preference for sub-adult and adult kokanee. They found only a weak relationship between bull trout size and prey size (as did Arndt 2004b) with small bull trout preying upon fairly large fish $(10-22 \mathrm{~cm})$ and larger bull trout easily capable of eating the largest kokanee. Arndt (2004b) found a positive relationship between length of rainbow trout and length of consumed kokanee where trout over 65 cm rarely consumed kokanee less than 15 cm . An in depth investigation of the population dynamics leading to high kokanee survival to spawning size is beyond the scope of this study. The years 2001 to 2005 offer an example of conditions that optimized benefits to bull trout and piscivorous rainbow trout, and occurred when total estimated spawner returns to the Arrow system exceeded 600,000. In general, our results with pelagic bull and rainbow trout parallel those of He et al. (2008) in Lake Huron, where large lake trout S. namaycush were found to be more sensitive to prey availability than small lake trout, and chinook salmon $O$. tshawytscha had greater sensitivity to prey ( $K$, survival) than char species.

### 4.1 Recommendations

The creel survey on Arrow Lakes Reservoir should be conducted on a regular basis to monitor the response of the fish community and angling quality to the compensation projects, especially if there are management experiments or operational changes. Given anticipated changes in the number and quality of boat ramps, overflight counts should be included during the next few years to provide an accurate ratio expansion ratio to whole-reservoir estimates, and determine whether new ramps change the spatial distribution of effort. The distribution of fishing effort in overflight results should also be used to evaluate whether the three sampled access locations are still adequate to characterize the fishery; it may be necessary to expand the number of sites monitored, perhaps re-introducing some sampling at Edgewood or Fauquier or sampling at other locales such as Beaten Arm or Revelstoke Reach.

If funding is not available for a full creel survey every year, a collection of length and weight samples from the Nakusp and Shelter Bay sites could allow $K_{n}$ trends to be tracked at a reduced cost. Based on the correlations in the 2003-2009 period, $K_{n}$ could serve as an index of feeding conditions, fishing success, and perhaps population abundance for bull trout and piscivorous rainbows.

Sources of natural recruitment for piscivorous rainbow trout need to be identified for Arrow Lakes Reservoir (Spence et al. 2005). Stocking of hatchery fish has not contributed significantly to the fishery in the last decade, however, there appeared to be reasonably good natural recruitment in the
early years of the nutrient program based on the large increase in catch of un-clipped fish. Identification of spawning streams and habitat conditions would contribute to determining whether the stream or reservoir phase of their life history is more likely to be limiting. It would also help protect critical habitats, and might highlight opportunities for stream restoration or enhancement. All future releases of hatchery fish should be clipped and monitoring of clipped rainbow trout should be continued in future surveys.

Further analyses of trophic interactions in the ALR food web, including the possible role of operational changes (timing and magnitude of flows through the reservoir) are needed to ensure that targets and methods for the spawning channel and nutrient programs are compatable with provincial objectives, and conducive to high trophic transfer efficiency and fishery benefits. Kerr (1971b) found production efficiency and size composition of exploited lake trout to be suseptible to management through control of the size composition of the supporting prey resource. Predator condition $\left(K_{n}\right)$ in relation to size and abundance of kokanee may be a useful metric to investigate the optimal kokanee fry loading rate for ALR.

### 5.0 REFERENCES

Akaike, H. (1974). "A new look at the statistical model identification". IEEE Transactions on Automatic Control 19, 716-723.

Anderson, R.O. and R.M. Newmann. 1996. Length, weight, and associated structural indices. Pages 447-482 in B.R. Murphy and D.W. Willis, editors. Fisheries Techniques, $2^{\text {nd }}$ edition. American Fisheries Society, Bethesda, Maryland.

Andrusak, G.F. and J.L. Thorley. 2010. Kootenay Lake Exploitation Study: Fishing and Natural Mortality of Large Rainbow Trout and Bull Trout. Report prepared for the Habitat Conservation Trust Fund by Poisson Consulting Ltd. and Redfish Consulting Ltd., Nelson, BC.

Arndt, S.K.A., T.J. Benfey and R.A. Cunjak. 1996. Effect of temporary reductions in feeding on protein synthesis and energy storage of juvenile Atlantic salmon. Journal of Fish Biology 49: 257-276.

Arndt, S. 2002a. Arrow Lake Reservoir Creel Survey and Contribution of Hatchery Production in 1998 and 1999. Columbia Basin Fish \& Wildlife Compensation Program, File 138-28.

Arndt, S. 2002b. Summary of Winter Creel Surveys for Columbia and Windermere Lakes from 1995-2001. Columbia Basin Fish \& Wildlife Compensation Program, File 134-10.

Arndt, S. 2004a. Arrow Lakes Reservoir Creel Survey 2000-2002. Report prepared for Columbia Basin Fish and Wildlife Compensation Program, File 138-28a.

Arndt, S. 2004b. Post-fertilization diet, condition and growth of bull trout and rainbow trout in Arrow Lakes Reservoir. Columbia Basin Fish \& Wildlife Compensation Program, File 138-38.

Arndt, S. 2009a. Footprint Impacts of BC Hydro Dams on Kokanee Populations in the Columbia River Basin, British Columbia. Fish and Wildlife Compensation Program - Columbia Basin, File 132-83.

Arndt, S. 2009b. Footprint Impacts of BC Hydro Dams on Rainbow Trout in the Columbia River Basin, British Columbia. Fish and Wildlife Compensation Program - Columbia Basin, File 132-82.

Arndt, S. and J. Baxter. 2006. Status of Burbot (Lota lota) in Arrow Lakes Reservoir. Fish and Wildlife Compensation Program - Columbia Basin, File 138-43.

Barney, B. 2009. Hill Creek Spawning Channel 2008-2009 Annual Summary of Work. Consultant report prepared for Columbia Basin Fish and Wildlife Compensation Program, File 145-19a.

Blackwell, B.G., M.L. Brown and D.W. Willis. 2000. Relative weight (Wr) status and current use in fisheries assessment and management. Reviews in Fisheries Science 8:1-44.

Burnham, K. P., and Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer-Verlag.

Bray, K. and M. Campbell. 2001. Lake Revelstoke Reservoir Creel and Visitor Use Survey 2000. Technical Report prepared for the Columbia Basin Fish \& Wildlife Compensation Program, File 133-15.

Dauk, P.C. and C.J. Schwarz. 2001. Catch estimation with restricted randomization in the effort survey. Biometrics 57: 461-468.

Canada Fisheries and Oceans. 2005. Survey of Recreational Fishing in Canada in 2005. http://www.dfo-mpo.gc.ca/stats/rec/can/2005/annexea-eng.htm (accessed May 26, 2010)

Cochran, W. G. (1977). Sampling Methodology. Wiley: New York.
Doxey, M. 2000. Fishery Management Report for Sport Fisheries in the Lower Tanana River Management Area for 1998. Alaska Dept. of Fish \& Game, Fishery Mgmt Rep. No. 00-10.

Glova, G., D. Robichaud and R. Bussanich. 2009. Arrow Lakes Burbot Life History and Habitat Use (Year 1). Report prepared for BC Hydro, Vancouver by LGL Limited, Sidney, BC.

Hagen, J. 2008. Impacts of dam construction in the upper Columbia Basin, British Columbia, on bull trout (Salvelinus confluentus) production, fisheries, and conservation status. Consultant report prepared for Fish and Wildlife Compensation Program - Columbia Basin.

He, J.X., J.R. Bence, J.E. Johnson, D.F. Clapp and M.P. Ebener. 2008. Modelling variation in mass-length relations and condition indices of lake trout and chinook salmon in Lake Huron: a hierarchical Bayesian approach. Transactions of the American Fisheries Society 137:801-817.

Kerr, S.R. 1971a. Prediction of fish growth efficiency in nature. Journal of the Fisheries Research Board of Canada 28:809-814.

Kerr, S.R. 1971b. A simulation model of lake trout growth. Journal of the Fisheries Research Board of Canada 28:815-819.

Lindsay, R.A. 1982. Physical and Biological Criteria Used in the Design of Hill Creek Spawning Channel. Report prepared for The Kootenay Region Fish and Wildlife Branch, Nelson, BC. 25 pp.

Lindsay, R.A. 1986. Upper Arrow Reservoir Sport Fishery Statistics 1985-86. Kootenay Region Report No. KO-8, Fisheries Branch, Nelson, BC. 26 p.

Lindsay, R.A. 1991. Arrow Lakes Fisheries Management Plan 1991-1996. Draft report Ministry of Environment, Lands, and Parks, Nelson, BC (cited by Sebastian et al. 1991).

Liao, H., C.L. Pierce, D.H. Wahl, J.B. Rasmussen, and W.C. Legget. 1995. Relative weight ( $W_{r}$ ) as a field assessment tool: relationships with growth, prey biomass, and environmental conditions. Transactions of the Amerimcan Fisheiries Society 124:387-400.

Malvestuto, S.P. 1996. Sampling the recreational creel. Pages 591-623 in B.R. Murphy and D.W. Willis, editors. Fisheries Techniques: 2nd Edition. American Fisheries Society, Bethesda, Maryland.

Martin, A.D. 1976. Kootenay Lake Burbot Fishery. Technical report prepared for B.C. Ministry of Environment.

Matzinger, A.R., Pieters, K.I., Ashley, G.A., Lawrence, and A. Wuest. 2007. Effects of impoundment on nutrient availability and productivity in lakes. Limnology and Oceanography 52: 2629-2640.

McPhail, J.D. and R. Carveth.1992. A foundation for conservation: the nature and origin of the freshwater fish fauna of British Columbia. University of British Columbia, Dept. of Zoology, Fish Museum, Vancouver, B.C. (cited by Sebastian et al. 2000).

Moody, A., P. Slaney and J. Stockner. 2007. Footprint Impact of BC Hydro Dams on Aquatic and Wetland Productivity in the Columbia Basin. Report prepared by AIM Ecological Consultants Ltd. in
association with Eco-Logic Ltd. and PSlaney Aquatic Science Ltd. for Fish and Wildlife Compensation Program, Nelson, BC. 176 pp.

Neufeld, M. and C. Spence. 2009. Moyie Lake Burbot Program 2008-2009: Sport Fishery, Juvenile Sampling, and Conservation Aquaculture/Spawning Surveys. B.C. Ministry of Environment report, Nelson, BC. 48 pp.

Pieters, R., and 11 other authors. 2003. Restoration of kokanee salmon in the Arrow Lakes Reservoir, British Columbia: preliminary results of a fertilization experiment. Pages 177-196 in J.G. Stockner, editor. Nutrients in Salmonid Ecosystems: Sustaining Production and Biodiversity. American Fisheries Society, Symposium 34, Bethesda, Maryland.

Pollock, K.H., C.M. Jones and T.L. Brown. 1994. Angler Survey Methods and Their Application to Fisheries Management. American Fisheries Society Special Publication 25, Bethesda, Maryland.

Porto, L. and S. Arndt. 2006. Hill Creek Spawning Channel Rainbow Trout Studies 2005. Fish and Wildlife Compensation Program, Nelson, BC. 25 pp. + appendices.

Prince, A. and R.S. Cope. 2008. North Moyie Lake Burbot Creel Survey 2008. Report prepared for B.C. Ministry of Environment, Nelson, B.C. by Westslope Fisheries Ltd., Cranbrook, B.C. 26 pp.

Quinn, S. 2000. The status of recreational fisheries for burbot in the United States. Pages 128 -135. In V.L. Paragamian and D.W. Willis, editors. Burbot: biology, ecology, and management. American Fisheries Society, Fisheries Management Section, Publication Number 1, Bethesda.

Rand, P.S. and D.J. Stewart. 1998. Prey fish exploitation, salmonine production, and pelagic food web efficiency in Lake Ontario.

Rieman, B.E. and D.L. Myers. 1992. Influence of fish density and relative productivity on growth of kokanee in ten oligotrophic lakes and reservoirs in Idaho. Trans, Amer. Fish. Soc. 121:178-191.

Rieman, B.E. and M. A. Maiolie. 1995. Kokanee population density and resulting fisheries. North American Journal of Fisheries Management 15:229-237.
R.L.\& L. Environmental Services Ltd. 1994. Fish Stock and Habitat Assessments for the Columbia River below Revelstoke Canyon Dam. Report prepared for B.C. Hydro, Environmental Resources. R.L.\& L. Rep. No. 340F. 99 p. + appendices.

Robichaud, D., G. Glova, E. Plate and M. Mathews. 2011. Arrow Lakes Reservoir Burbot Life History and Habitat Use (Year 3). Report prepared for BC Hydro, Vancouver by LGL Limited, Sidney, BC.

Schindler, E., D. Sebastian and H. Andrusak. 2006. Arrow Lakes Reservoir Fertilization Experiment Summary Report - 1999 to 2004. Fish and Wildlife Compensation Report, File 138-16f.

Schwarz, C.J. 2010. Analysis of Preliminary Creel Survey and Recommendations for a Creel Survey of Kootenay Lake, British Columbia. Prepared for the Fish and Wildlife Compensation Program by Department of Statistics and Actuarial Science, Simon Fraser University, File 136-70.

Sebastian, D., H. Andrusak, G. Scholten and L. Brescia. 2000. Arrow Reservoir Fish Summary. Stock Management Report - 2000. Province of British Columbia, Ministry of Fisheries.

Shepherd, B.G. 1994. Angler Surveys of Okanagan Main Valley Lakes 1982-1992. B.C. Ministry of Environment, Lands, and Parks, Fisheries Section. Penticton, B.C. Fisheries Project Report No. OK17.

Sokal, R.R. and F.J. Rohlf. 1973. Introduction to Biostatistics. W.H. Freeman Company, San Francisco.
Spence, C.R., H. Andrusak, J.A. Burrows and J.S. Baxter. 2005. Arrow Lakes Reservoir Rainbow Trout Restoration and Management Plan 2005-2014. Ministry of Environment Rep. http://a100.gov.bc.ca/appsdata/acat/

Stewart, D.J. and M. Ibarra. 1991. Predation and production by salmonine fishes in Lake Michigan, 1978-88. Canadian Journal of Fisheries and Aquatic Sciences 48:909-922.

Taube, T.T. 2000. Area Management Report for the Recreational Fisheries of the Upper Copper/Upper Susitna River Management Area, 1996-1997. Alaska Dept. Fish \& Game, Fishery Mgmt. Rep. No. 00-4.

Thorp, G. 1995. Hill creek Hatchery and Spawning Channel 1995 Annual Report. BC Environment, Fisheries Program, Kootenay Region. 38 pp. + Appendices.

VanDeValk, A.J., J.L. Forney and J.R. Jackson. 2008. Relationships between relative weight, prey availability, and growth of walleyes in Oneida Lake, New York. North American Journal of Fisheries Management 28:1868-1875.

Weatherley, A.H. and H.S. Gill. 1987. The Biology of Fish Growth. London: Academic Press.
Westover, W.T. 2007. Moyie Lake Creel and Burbot Spawning Survey January to March 2007). B.C. Ministry of Environment report, Cranbrook, BC. 22 pp.

### 6.0 APPENDICES

APPENDIX 1. Estimating the Precision of the Creel Surveys on Arrow Lake
Prepared for BC Hydro
by

Carl Schwarz<br>Department of Statistics and Actuarial Science<br>Simon Fraser University<br>Burnaby, BC, V5A 1S6<br>cschwarz@stat.sfu.ca

## 1. Introduction

Creel surveys are conducted each year at Arrow Lake, British Columbia. The sampling protocol is explained in detail in Arndt (2002) and the methods section of this report. Briefly, the lake is sampled at 3 access points for 5 days per month from January to December. This provides coverage of approximately a sixth of the total days in each month, and a quarter of weekend days. Sampling was randomized within the day types shown in Table 1, except that days of fishing derbies were excluded. In keeping with past surveys, one Monday and two other weekdays were sampled each month, although for analysis purposes all weekdays were combined as recommended by Arndt (2002).

Technicians were expected to stay at the access point for the duration of the fishing day, and the number of interviews is assumed to be the total effort for a given access point and day. There were no boat counts on the lake. Anglers were interviewed at the end of their trip. Information recorded included length of fishing trip, target species, species harvested and released, and angler residence. All harvested fish were examined for the presence of hatchery clips and tags (contingent on angler permission). Length and weight measurements were recorded for a subsample of harvested fish with the stipulation that all fish from a given boat be measured if measurements were taken.

Table 1. Time and access strata for the Arrow Lakes Reservoir creel surveys from 2000-2002.

| Day type | Weekend | 2 days per month |
| :--- | :--- | :--- |
|  | Weekdays (including one Monday) | 3 days per month |
| Access Locations | Upper Arrow |  |
|  | Shelter Bay boat ramp | 5 days per month |
|  | Nakusp government wharf | 5 days per month |
|  | Lower Arrow | 5 days per month |
|  | Castlegar (Scotties and Syringa <br> marinas, Syringa Park) |  |

## 2. Analysis of Design and Assumptions

Each year's study appears to be a stratified design (strata defined by site and month and daytype) where days are selected randomly in each site-month-daytype combination. On these selected days, clerks visited the site and recorded information from all returning parties of angler to this access point. Pollock et al. (1994) discuss this design extensively.

The following assumptions will be made:
(a) creel clerks selected weekdays/weekends independently at random in each month. As noted above, at least one Monday was chosen in each month, and the remaining weekdays were selected from the other days
of the week. One could define three strata within each month, weekends, weekdays, and Monday, but with only one Monday selected in each month, the variance over Mondays cannot be computed without further assumptions. Consequently, despite this restricted randomization, the sample of weekdays will be assumed to be a random sample of all weekdays in the month. The effect of this upon the estimates and estimated precision is unknown as the pattern on effort on Mondays relative to the other days of the week is presently unknown. However, Arndt (personal communications) examined the pattern of effort on Mondays and found that it was similar to other weekdays. ${ }^{11}$
(b) At least 2 days of each type are measured in each month. This allows an estimate of the precision for that daytype to be computed for that month-site combination.
(c) Local fishing derbies are not treated separately but are simply incorporated into the estimates if they occur on a sampled day.
(d) Reported numbers are the TOTALS at that access point for those days. No parties are missed from that site-month-daytype combination. Arndt (person communication ) indicated that this should be true for Nakusp and Shelter Bay sites, but at the Castlegar access point it is difficult (impossible) to contact everyone in the summer months (too many people/more than one boat ramp). For now the missed effort is considered as part of the effort from unsampled access points and corrected using an adjustment factor (see below). I recommend that for future surveys, it may be beneficial for clerks to simply try and sub-sample the returning anglers, e.g. sample every $3^{\text {rd }}$ party. This sampling fraction can then be used in the computations without having to do ad hoc adjustments afterwards.
(e) No missing data from parties. For example, were there any parties that refused to be interviewed or did not provide any information?
(f) The adjustment for access points not surveyed will be done using a "ratio estimator" (Cochran 1977, see Methods).
(g) All landing sites were surveyed on the same days in the month, i.e. if the $3^{\text {rd }}$ of the month was a selected day, then all sites were surveyed on the $3^{\text {rd }}$.

## 3. Estimates and estimated standard errors.

The following steps are taken to find the standard error of estimate for the yearly total for a particular site. This is demonstrated in the attached spreadsheet for finding the estimates for the total number of angler-trips taken at Castlegar. The estimates are formed as simple expansion of the average for a daytype within a month by the number of daytypes within that month. The standard error at this first step is based on that for estimating a total from a simple random sample as outlined in many books on sampling and demonstrated by Pollock et al. (1994). It is not necessary to use the method of successive differences because each daytype has at least 2 replicates.

The subscripts used are:
$\mathrm{m}=$ month,
$\mathrm{t}=$ type of day (weekend, weekday),
d=date within that day-type.
Notation:

| $A_{m t d}$ | Total number of anglers for that month, day-type, date combination., |
| :--- | :--- |

[^9]| $\bar{A}_{m t}=\sum_{d} A_{m t d}$ | Average number of angler per day for month, day-type combination |
| :---: | :---: |
| $s\left(A_{m t}.\right)$ | Standard deviation of anglers per day for month, day-type combination |
| $n_{m t}$ | Number of days measured for that month, day-type combination for the number of anglers |
| $N_{m t}$ | Total number of days of each type in each month. |
| total ( $A_{m t}$ ) | Estimated total number of angler trips for that month-day type combination. $\operatorname{total}\left(A_{m t}\right)=N_{m t} \bar{A}_{m t}$ |
| $\operatorname{se}\left[\operatorname{total}\left(A_{m t}\right)\right]$ | Estimated standard error for the total number of angler trips for that month-day type combination. $\operatorname{se}\left[\operatorname{total}\left(A_{m t}\right)\right]=N_{m t} \sqrt{\frac{s\left(A_{m t} \cdot\right)^{2}}{n_{m t}}\left(1-\frac{n_{m t}}{N_{m t}}\right)}$ |
| total ( $\left.A_{m}.\right)$ | Estimated total number of angler trips for that month. $\operatorname{total}\left(A_{m}.\right)=\operatorname{total}\left(A_{m, w e}\right)+\operatorname{total}\left(A_{m, w d}\right)$ |
| $\operatorname{se}\left[\operatorname{total}\left(A_{m}.\right)\right]$ | Estimated standard error for total angler trips in that month $\operatorname{se}\left[\operatorname{total}\left(A_{m}.\right)\right]=\sqrt{\operatorname{se}\left[\operatorname{total}\left(A_{m, w d}\right)\right]^{2}+\operatorname{se}\left[\operatorname{total}\left(A_{m, w e}\right)\right]^{2}}$ |
| total ( ... $^{\text {) }}$ | Estimated grand total over all month. $\operatorname{total}\left(A_{. .}\right)=\operatorname{total}\left(A_{\text {jan }}\right)+\ldots+\operatorname{total}\left(A_{\text {dec. }}\right)$ |
| $\operatorname{se}\left[\operatorname{total}\left(A_{. .}\right)\right]$ | Estimated standard error for grand total over all months $\operatorname{se}\left[\operatorname{total}\left(A_{. .}\right)\right]=\sqrt{\operatorname{se}\left[\operatorname{total}\left(A_{\text {jan },} .\right)\right]^{2}+\ldots+\operatorname{se}\left[\operatorname{total}\left(A_{\text {dec },} .\right)\right]^{2}}$ |

The following procedure is followed to estimate the yearly total and estimated se.

| Step | Example |
| :---: | :---: |
| 1. Total the information from all parties interviewed at a particular landing. The resulting table should have one line for each site-month-daytype-date combination | See table 1 in attached spreadsheet. $A_{\text {june, we, } 10 \text { june }}=26$ |
| 2. Compute the average number of angler trips over the replicate day-types within that month and site. Also compute the standard deviation and the number of replicates of that day-type in that monthsite combination. This can be done using a pivot-table in Excel. | $\begin{aligned} & \bar{A}_{\text {june,we }}=33.5 \\ & s\left(A_{\text {june,we. }}\right)=10.61 \\ & n_{\text {june,we }}=2 \end{aligned}$ |
| 3. Determine total number of days of each day-type in each month. | $N_{\text {junewe }}=8$ |
| 4. Estimate total number of angler-trips for that month for each day type. Multiply the mean from step 2 by the total number of days of that day-type. | $\operatorname{total}\left(A_{\text {junewe }}\right)=33.5 \times 8=268.0$ |
| 5. Estimate the se for estimate in step 4. | $s e\left[\operatorname{total}\left(A_{\text {junewe }}\right)\right]=8 \sqrt{\frac{10.607^{2}}{2}\left(1-\frac{2}{8}\right)}=52.0$ |
| 6. Estimate total number of angler-trips for that month over both day types. Add together both estimates from Step 4. | $\operatorname{total}\left(A_{\text {june }}\right)=280.0+268.0=548.0$ |


| 7. Estimate the se for estimate in step 6 by <br> adding the sum of SQUARES of the <br> individual standard errors and then taking <br> the sqrt. | $\operatorname{se}\left[\operatorname{total}\left(A_{m}.\right)\right]=\sqrt{65.8^{2}+52.0^{2}}=84$ |
| :--- | :--- |
| 8. Estimate the grand total over all months <br> by adding the totals from each month | $\operatorname{total}\left(A_{. .}\right)=548+\ldots+171$ |
| 9. Estimate se for grand total in a similar <br> fashion as in Step 7. | $\operatorname{se}\left[\operatorname{total}\left(A_{. .}\right)\right]=\sqrt{84^{2}+\ldots+48^{2}}=187$ |

Because all sites were surveyed on the same days, estimates of total for combinations of sites are done exactly as above EXCEPT you must find the day totals in Step 1 OVERALL SITES TO BE COMBINED. The reason that the sites must be combined before further analysis is that by surveying all sites on the same day, the readings over sites are no longer independent. For example, if a particular day happens to be very pleasant, it might be expected that more anglers than normal would be fishing that day on all sites.

If the estimates need to be multiplied by an adjustment-factor to account for sites not visited etc, simply multiply the estimate and the se by the same adjustment-factor (as described in Methods).

The same series of computations are done for each variable in the study. A summary of the results for 2003 are shown in Table 2.

## 4. References

Arndt, S. 2002. Arrow Lakes Reservoir Creel Survey and Contribution of Hatchery Production in 1998 and 1999. Columbia Basin Fish and Wildlife Program technical report, File 138-28.

Pollock, K. H., Jones, C. M. and Brown, T.L. (1994). Angler survey methods and their applications in fisheries management. American Fisheries Society Special Publication 25, Bethesda.

APPENDIX 2. Monthly correction factors and standard errors pooled over day-types and all years from the ratio of overflight boat counts and interviewed anglers at 3 access points.

|  | Zone |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All |  | Lower |  | Middle and Upper |  | Middle |  | Upper |  |
| Month | Corr <br> Factor | se (Corr Factor) |
| 1 | 0.76 | 0.11 | 0.00 | 0.00 | 0.88 | 0.04 | 0.88 | 0.03 | 1.00 | 1.10 |
| 2 | 1.56 | 0.15 | 1.82 | 0.30 | 1.46 | 0.14 | 1.54 | 0.14 | 1.10 | 0.27 |
| 3 | 1.11 | 0.10 | 0.96 | 0.11 | 1.21 | 0.14 | 1.51 | 0.24 | 0.95 | 0.11 |
| 4 | 1.59 | 0.59 | 2.71 | 0.54 | 1.58 | 0.51 | 1.38 | 0.38 | 1.92 | 1.43 |
| 5 | 1.25 | 0.20 | 2.60 | 0.77 | 1.06 | 0.12 | 1.22 | 0.19 | 0.91 | 0.12 |
| 6 | 2.82 | 0.79 | 5.41 | 1.86 | 1.59 | 0.15 | 1.74 | 0.13 | 0.90 | 0.35 |
| 7 | 2.53 | 0.31 | 2.97 | 0.66 | 2.70 | 0.51 | 2.84 | 0.66 | 2.40 | 0.81 |
| 8 | 1.96 | 0.42 | 2.32 | 0.65 | 2.06 | 0.62 | 2.55 | 1.10 | 1.44 | 0.20 |
| 9 | 1.34 | 0.17 | 2.30 | 0.82 | 1.19 | 0.11 | 1.08 | 0.13 | 1.40 | 0.13 |
| 10 | 1.14 | 0.16 | 2.17 | 0.63 | 1.02 | 0.10 | 1.12 | 0.08 | 0.88 | 0.23 |
| 11 | 1.09 | 0.23 | 1.57 | 0.52 | 1.03 | 0.18 | 1.23 | 0.21 | 0.71 | 0.18 |
| 12 | 1.48 | 0.27 | 2.36 | 0.44 | 1.45 | 0.36 | 1.39 | 0.37 | 2.33 | 0.94 |

Note: In a few cases when there was a zero boat count in the overflight or zero boats in the access interviews the following procedures were applied. The theoretical treatment of these problems is not well understood. For example, 9 air/0 interview would indicate that potentially many more boats are present compared to the interviews that were collected and the inflation factor is infinite, however, in these cases, the usual "add 1 " to numerator and denominator was judged to be a sensible solution, i.e. the correction factor is computed as $(9+1) /(0+1)=10 / 1=10$. In the $0 / 0$ situation, adding 1 to the numerator and denominator would give $(0+1) /(0+1)$ or 1 as the correction factor which is "sensible". The cases where the air count is less than the interview count, should, in theory, not happen. We suspect that this is caused by "measurement" error in reporting the interview start/end time or assessing the overlap with the overflight, or by errors in the overflight count such as boats going to places where the overflight did not see them. In this case the correction factor was set to a minimum of 1 for the expansions (i.e., there cannot be less active boats than the number interviewed).

APPENDIX 3. Angler residence composition on Arrow Lakes Reservoir from 1976 to 2009. Data up to 1996 are from Hill Creek Hatchery creel records (Thorp 1995); 1995 to 1997 were not available. Number of access sites monitored was reduced from five to three in 1999.

| Year | Total \# Anglers Interviewed | Resident (\%) | Non Resident Canadian (\%) | Non Resident Alien (\%) |
| :---: | :---: | :---: | :---: | :---: |
| 1976 | 852 | 97.0 | 2.0 | 1.0 |
| 1977 | 1,084 | 97.1 | 1.7 | 1.2 |
| 1978 | 1,006 | 95.1 | 3.0 | 1.9 |
| 1979 | 959 | 94.0 | 5.0 | 1.0 |
| 1980 | 1,253 | 93.0 | 5.0 | 2.0 |
| 1981 | 1,060 | 86.9 | 11.8 | 1.2 |
| 1982 | 977 | 90.0 | 8.0 | 2.0 |
| 1983 | 887 | 90.0 | 9.0 | 1.0 |
| 1984 | 751 | 89.0 | 10.0 | 1.0 |
| 1985 | 1,387 | 90.3 | 8.4 | 1.3 |
| 1986 | 916 | 85.0 | 12.0 | 3.0 |
| 1987 | 1,129 | 85.0 | 11.0 | 4.0 |
| 1988 | 1,089 | 88.0 | 8.0 | 4.0 |
| 1989 | 963 | 89.1 | 9.8 | 1.1 |
| 1990 | 900 | 88.6 | 9.8 | 1.6 |
| 1991 | 841 | 92.4 | 6.7 | 0.9 |
| 1992 | 898 | 87.9 | 10.7 | 1.4 |
| 1993 | 649 | 91.4 | 8.3 | 0.3 |
| 1994 | 807 | 90.0 | 9.3 | 0.7 |
| 1995 | - | - | - | - |
| 1996 | - | - | - | - |
| 1997 | - | - | - | - |
| 1998 | 1,463 | 95.6 | 3.4 | 1.0 |
| 1999 | 1,264 | 96.4 | 2.5 | 1.1 |
| 2000 | 1,071 | 94.3 | 4.2 | 1.5 |
| 2001 | 1,847 | 93.6 | 5.0 | 1.4 |
| 2002 | 1,694 | 94.8 | 4.3 | 0.9 |
| 2003 | 1,540 | 91.8 | 7.6 | 0.6 |
| 2004 | 1,896 | 92.7 | 5.8 | 1.5 |
| 2005 | 1,826 | 89.9 | 9.3 | 0.8 |
| 2006 | 1,624 | 93.8 | 5.7 | 0.5 |
| 2007 | 1,784 | 90.7 | 7.3 | 2.0 |
| 2008 | 1,535 | 90.4 | 9.3 | 0.3 |
| 2009 | 1,700 | 87.5 | 11.9 | 0.6 |

APPENDIX 4. Arrow Lakes creel survey annual estimates using a common monthly correction factor applied to all zones to adjust for boats returning to non-sampled access sites. See Figure 1 for zone boundaries.

| Year 2003 | All Sites (Zones) |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 68346 | 6075 | 15492 | 2091 | 37254 | 3579 | 15601 | 2027 | 52854 | 4612 |
| Bull Kept | 2004 | 195 | 152 | 44 | 1207 | 143 | 645 | 126 | 1852 | 193 |
| Bull Released | 1791 | 240 | 42 | 13 | 873 | 120 | 875 | 228 | 1749 | 238 |
| Bull Total | 3795 | 392 | 194 | 48 | 2081 | 216 | 1520 | 334 | 3601 | 388 |
| Burbot Kept | 657 | 183 | 0 | 0 | 657 | 183 | 0 | 0 | 657 | 183 |
| Burbot Released | 78 | 42 | 0 | 0 | 78 | 42 | 0 | 0 | 78 | 42 |
| Burbot Total | 736 | 198 | 0 | 0 | 736 | 198 | 0 | 0 | 736 | 198 |
| Kokanee Kept | 2771 | 440 | 2307 | 389 | 367 | 117 | 97 | 59 | 464 | 116 |
| Kokanee Released | 1004 | 197 | 725 | 198 | 178 | 82 | 101 | 57 | 279 | 55 |
| Kokanee Total | 3775 | 575 | 3032 | 521 | 545 | 164 | 198 | 109 | 743 | 137 |
| Num Anglers | 14475 | 1218 | 3268 | 306 | 8097 | 801 | 3110 | 391 | 11207 | 966 |
| Num Rods | 15952 | 1315 | 3320 | 299 | 9277 | 882 | 3355 | 399 | 12632 | 1063 |
| Other Species Kept | 93 | 51 | 8 | 8 | 75 | 49 | 11 | 10 | 86 | 50 |
| Other Released | 25 | 14 | 8 | 8 | 0 | 0 | 17 | 11 | 17 | 11 |
| Other Total | 119 | 54 | 16 | 15 | 75 | 49 | 28 | 15 | 103 | 52 |
| Rainbow Kept | 2813 | 438 | 597 | 182 | 1681 | 288 | 536 | 129 | 2217 | 335 |
| Rainbow Released | 1106 | 137 | 162 | 63 | 516 | 93 | 428 | 93 | 944 | 123 |
| Rainbow Total | 3919 | 478 | 759 | 201 | 2197 | 289 | 964 | 196 | 3161 | 390 |
| Rod hours | 74127 | 6447 | 15693 | 2022 | 41843 | 3911 | 16591 | 2041 | 58434 | 4981 |


| Year 2004 | All Sites (Zones) |  | Castlegar |  | Nakusp |  | Shelter Bay | Shelter Bay + Nakusp |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 83434 | 8033 | 25867 | 2584 | 39654 | 4794 | 17913 | 2308 | 57567 | 6059 |
| Bull Kept | 2005 | 251 | 219 | 53 | 1128 | 189 | 658 | 120 | 1786 | 243 |
| Bull Released | 1404 | 171 | 58 | 34 | 742 | 110 | 605 | 124 | 1346 | 165 |
| Bull Total | 3409 | 376 | 277 | 69 | 1869 | 244 | 1263 | 224 | 3132 | 360 |
| Burbot Kept | 447 | 155 | 0 | 0 | 424 | 154 | 24 | 17 | 447 | 155 |
| Burbot Released | 23 | 21 | 0 | 0 | 23 | 21 | 0 | 0 | 23 | 21 |
| Burbot Total | 470 | 150 | 0 | 0 | 446 | 149 | 24 | 17 | 470 | 150 |
| Kokanee Kept | 8600 | 1212 | 6942 | 1093 | 1478 | 315 | 180 | 80 | 1658 | 321 |
| Kokanee Released | 6540 | 1135 | 4998 | 1014 | 1384 | 273 | 158 | 65 | 1542 | 260 |
| Kokanee Total | 15140 | 2280 | 11939 | 2022 | 2862 | 548 | 338 | 119 | 3200 | 528 |
| Num Anglers | 17636 | 1745 | 6133 | 650 | 7881 | 917 | 3622 | 475 | 11503 | 1194 |
| Num Rods | 18974 | 1856 | 6269 | 662 | 8746 | 991 | 3959 | 503 | 12705 | 1291 |
| Other Species Kept | 35 | 16 | 22 | 14 | 13 | 9 | 0 | 0 | 13 | 9 |
| Other Released | 135 | 37 | 92 | 28 | 0 | 0 | 42 | 25 | 42 | 25 |
| Other Total | 170 | 43 | 114 | 31 | 13 | 9 | 42 | 25 | 55 | 29 |
| Rainbow Kept | 4241 | 593 | 1002 | 178 | 2582 | 481 | 657 | 107 | 3239 | 498 |
| Rainbow Released | 2171 | 315 | 404 | 100 | 1543 | 307 | 224 | 58 | 1767 | 315 |
| Rainbow Total | 6412 | 772 | 1406 | 248 | 4125 | 633 | 881 | 129 | 5006 | 662 |
| Rod hours | 89272 | 8481 | 26199 | 2603 | 43544 | 5100 | 19529 | 2451 | 63074 | 6463 |


| Year 2005 | All Sites (Zones) |  |  | Castlegar |  | Nakusp |  |  | Shelter Bay |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Shelter Bay + Nakusp |  |  |  |  |  |  |  |  |  |  |
| Variable | Estimate | SE |
| Angler Hours | 76842 | 7476 | 2339 | 3026 | 35398 | 4612 | 18047 | 2508 | 53444 | 6037 |
| Bull Kept | 1933 | 251 | 236 | 64 | 1127 | 185 | 569 | 112 | 1697 | 240 |
| Bull Released | 1374 | 209 | 59 | 31 | 600 | 126 | 715 | 169 | 1314 | 211 |


| Bull Total | 3307 | 400 | 295 | 81 | 1727 | 279 | 1284 | 241 | 3011 | 398 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Burbot Kept | 369 | 99 | 0 | 0 | 369 | 99 | 0 | 0 | 369 | 99 |
| Burbot Released | 19 | 17 | 0 | 0 | 19 | 17 | 0 | 0 | 19 | 17 |
| Burbot Total | 388 | 103 | 0 | 0 | 388 | 103 | 0 | 0 | 388 | 103 |
| Kokanee Kept | 6761 | 1329 | 5146 | 1008 | 1469 | 775 | 146 | 76 | 1615 | 779 |
| Kokanee Released | 4601 | 1043 | 2891 | 865 | 1378 | 466 | 332 | 149 | 1710 | 519 |
| Kokanee Total | 11362 | 2125 | 8036 | 1589 | 2847 | 1194 | 478 | 173 | 3325 | 1252 |
| Num Anglers | 15939 | 1445 | 5302 | 585 | 6981 | 855 | 3656 | 492 | 10637 | 1126 |
| Num Rods | 17096 | 1553 | 5435 | 597 | 7710 | 914 | 3951 | 541 | 11662 | 1206 |
| Other Species Kept | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Released | 34 | 11 | 27 | 10 | 0 | 0 | 7 | 6 | 7 | 6 |
| Other Total | 34 | 11 | 27 | 10 | 0 | 0 | 7 | 6 |  | 7 |
| Rainbow Kept | 3271 | 564 | 879 | 203 | 1648 | 350 | 743 | 180 | 2392 | 468 |
| Rainbow Released | 1822 | 235 | 324 | 73 | 960 | 180 | 539 | 114 | 1499 | 227 |
| Rainbow Total | 5094 | 738 | 1203 | 244 | 2608 | 461 | 1283 | 273 | 3891 | 636 |
| Rod hours | 81901 | 7995 | 23888 | 3091 | 38561 | 4899 | 19453 | 2705 | 58014 | 6415 |


| Year 2006 | All Sites (Zones) |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 72574 | 7571 | 2254 | 3700 | 29176 | 3022 | 20851 | 3133 | 50027 | 5281 |
| Bull Kept | 1817 | 238 | 204 | 87 | 918 | 147 | 694 | 110 | 1612 | 213 |
| Bull Released | 1736 | 271 | 100 | 87 | 678 | 125 | 958 | 211 | 1635 | 261 |
| Bull Total | 3552 | 463 | 304 | 172 | 1596 | 213 | 1652 | 297 | 3248 | 430 |
| Burbot Kept | 515 | 188 | 7 | 6 | 508 | 189 | 0 | 0 | 508 | 189 |
| Burbot Released | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Burbot Total | 515 | 188 | 7 | 6 | 508 | 189 | 0 | 0 | 508 | 189 |
| Kokanee Kept | 2308 | 472 | 1976 | 421 | 258 | 94 | 73 | 36 | 332 | 101 |
| Kokanee Released | 843 | 228 | 313 | 123 | 440 | 164 | 90 | 52 | 530 | 171 |
| Kokanee Total | 3151 | 629 | 2289 | 510 | 698 | 200 | 163 | 59 | 861 | 206 |
| Num Anglers | 14576 | 1524 | 4370 | 700 | 6392 | 656 | 3814 | 507 | 10206 | 1030 |
| Num Rods | 15110 | 1555 | 3936 | 606 | 7187 | 746 | 3987 | 535 | 11174 | 1140 |
| Other Species Kept | 90 | 52 | 19 | 10 | 71 | 52 | 0 | 0 | 71 | 52 |
| Other Released | 104 | 62 | 76 | 50 | 28 | 25 | 0 | 0 | 28 | 25 |
| Other Total | 195 | 103 | 96 | 51 | 99 | 77 | 0 | 0 |  | 99 |
| Rainbow Kept | 3635 | 576 | 1055 | 303 | 1653 | 309 | 927 | 164 | 2580 | 381 |
| Rainbow Released | 1786 | 262 | 105 | 37 | 823 | 193 | 858 | 126 | 1681 | 240 |
| Rainbow Total | 5421 | 757 | 1160 | 325 | 2476 | 435 | 1785 | 237 | 4261 | 545 |
| Rod hours | 74726 | 7774 | 20659 | 3434 | 32396 | 3380 | 21670 | 3235 | 54066 | 5737 |


| Year 2007 | All Sites (Zones) |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 82059 | 8599 | 29513 | 3823 | 33050 | 3946 | 19495 | 3914 | 52546 | 5873 |
| Bull Kept | 1821 | 218 | 216 | 48 | 971 | 153 | 634 | 124 | 1605 | 209 |
| Bull Released | 1184 | 223 | 5 | 4 | 543 | 159 | 636 | 154 | 1179 | 223 |
| Bull Total | 3005 | 366 | 221 | 49 | 1514 | 226 | 1270 | 262 | 2784 | 354 |
| Burbot Kept | 466 | 169 | 27 | 24 | 439 | 167 | 0 | 0 | 439 | 167 |
| Burbot Released | 17 | 15 | 0 | 0 | 17 | 15 | 0 | 0 | 17 | 15 |
| Burbot Total | 483 | 165 | 27 | 24 | 456 | 164 | 0 | 0 | 456 | 164 |
| Kokanee Kept | 9009 | 1323 | 6832 | 1150 | 1846 | 457 | 331 | 136 | 2177 | 540 |
| Kokanee Released | 2816 | 459 | 2359 | 426 | 217 | 101 | 240 | 80 | 457 | 133 |
| Kokanee Total | 11826 | 1703 | 9191 | 1480 | 2064 | 496 | 571 | 167 | 2634 | 579 |
| Num Anglers | 16809 | 1628 | 5969 | 717 | 7181 | 861 | 3659 | 432 | 10840 | 1072 |


| Num Rods | 16939 | 1584 | 5153 | 566 | 7937 | 946 | 3849 | 444 | 11786 | 1153 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Other Species Kept | 23 | 16 | 0 | 0 | 0 | 0 | 23 | 16 | 23 | 16 |
| Other Released | 24 | 17 | 0 | 0 | 0 | 0 | 24 | 17 | 24 | 17 |
| Other Total | 48 | 24 | 0 | 0 | 0 | 0 | 48 | 24 | 48 | 24 |
| Rainbow Kept | 3787 | 496 | 1302 | 245 | 1620 | 270 | 865 | 180 | 2485 | 341 |
| Rainbow Released | 1568 | 259 | 319 | 69 | 809 | 200 | 440 | 81 | 1249 | 228 |
| Rainbow Total | 5355 | 561 | 1621 | 262 | 2429 | 322 | 1305 | 206 | 3734 | 423 |
| Rod hours | 82616 | 8311 | 25828 | 3073 | 36365 | 4318 | 20423 | 3956 | 56788 | 6172 |


| Year 2008 | All Sites (Zones) |  | Castlegar |  | Nakusp |  | Shelter Bay | Shelter Bay + Nakusp |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 69743 | 6743 | 21760 | 2880 | 32163 | 3502 | 15821 | 1742 | 47983 | 4610 |
| Bull Kept | 1437 | 185 | 282 | 79 | 693 | 109 | 463 | 83 | 1156 | 159 |
| Bull Released | 1180 | 205 | 0 | 0 | 409 | 109 | 771 | 152 | 1180 | 205 |
| Bull Total | 2618 | 330 | 282 | 79 | 1102 | 186 | 1234 | 212 | 2336 | 319 |
| Burbot Kept | 454 | 139 | 0 | 0 | 454 | 139 | 0 | 0 | 454 | 139 |
| Burbot Released | 122 | 98 | 0 | 0 | 122 | 98 | 0 | 0 | 122 | 98 |
| Burbot Total | 576 | 189 | 0 | 0 | 576 | 189 | 0 | 0 | 576 | 189 |
| Kokanee Kept | 5249 | 917 | 4945 | 884 | 219 | 68 | 84 | 38 | 303 | 90 |
| Kokanee Released | 767 | 271 | 314 | 169 | 338 | 126 | 115 | 51 | 453 | 152 |
| Kokanee Total | 6015 | 1090 | 5259 | 963 | 557 | 162 | 199 | 83 | 756 | 214 |
| Num Anglers | 15190 | 1584 | 4464 | 581 | 7661 | 842 | 3065 | 384 | 10727 | 1132 |
| Num Rods | 15949 | 1619 | 4378 | 569 | 8366 | 876 | 3205 | 399 | 11571 | 1173 |
| Other Species Kept | 117 | 71 | 111 | 70 | 0 | 0 | 6 | 6 |  | 6 |
| Other Released | 22 | 5 | 0 | 0 | 0 | 0 | 22 | 5 | 6 |  |
| Other Total | 139 | 71 | 111 | 70 | 0 | 0 | 28 | 7 | 22 | 5 |
| Rainbow Kept | 3714 | 704 | 1396 | 439 | 1565 | 283 | 753 | 197 | 28 | 7 |
| Rainbow Released | 1292 | 267 | 54 | 29 | 824 | 237 | 414 | 93 | 12319 | 376 |
| Rainbow Total | 5006 | 777 | 1449 | 445 | 2389 | 405 | 1167 | 264 | 268 |  |
| Rod hours | 72789 | 6914 | 21362 | 2827 | 34899 | 3616 | 16528 | 1825 | 51427 | 4801 |


| Year 2009 | All Sites (Zones) |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 7699 | 7229 | 2379 | 3496 | 34936 | 3747 | 18261 | 2041 | 53198 | 4787 |
| Bull Kept | 1621 | 195 | 360 | 102 | 678 | 104 | 583 | 103 | 1261 | 153 |
| Bull Released | 1267 | 229 | 60 | 15 | 447 | 139 | 760 | 182 | 1207 | 227 |
| Bull Total | 2888 | 355 | 420 | 111 | 1126 | 198 | 1343 | 238 | 2469 | 326 |
| Burbot Kept | 456 | 167 | 0 | 0 | 456 | 167 | 0 | 0 | 456 | 167 |
| Burbot Released | 126 | 87 | 0 | 0 | 126 | 87 | 0 | 0 | 126 | 87 |
| Burbot Total | 582 | 245 | 0 | 0 | 582 | 245 | 0 | 0 | 582 | 245 |
| Kokanee Kept | 5796 | 729 | 4851 | 765 | 837 | 255 | 108 | 62 | 945 | 278 |
| Kokanee Released | 2385 | 611 | 1108 | 290 | 952 | 368 | 326 | 146 | 1278 | 454 |
| Kokanee Total | 8182 | 1124 | 5959 | 854 | 1789 | 560 | 434 | 135 | 2223 | 644 |
| Num Anglers | 15412 | 1378 | 4990 | 610 | 6658 | 706 | 3765 | 377 | 10422 | 939 |
| Num Rods | 15588 | 1358 | 4734 | 568 | 6882 | 716 | 3971 | 385 | 10854 | 965 |
| Other Species Kept | 29 | 21 | 29 | 21 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Released | 110 | 70 | 0 | 0 | 0 | 0 | 110 | 70 | 110 | 70 |
| Other Total | 139 | 74 | 29 | 21 | 0 | 0 | 110 | 70 | 110 | 70 |
| Rainbow Kept | 3215 | 408 | 1290 | 309 | 1054 | 202 | 871 | 177 | 1925 | 243 |
| Rainbow Released | 1330 | 232 | 310 | 131 | 596 | 152 | 424 | 97 | 1020 | 142 |
| Rainbow Total | 4545 | 542 | 1600 | 372 | 1650 | 319 | 1294 | 248 | 2945 | 329 |
| Rod hours | 77884 | 7131 | 22899 | 3367 | 35866 | 3780 | 19119 | 2039 | 54986 | 4898 |

APPENDIX 5. Arrow Lakes creel survey annual estimates using separate monthly correction factors for each site/zone combination to adjust for boats returning to non-sampled access sites. See Figure 1 for zone boundaries.

| Year 2003 | All Sites/Zones |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 68346 | 6075 | 23065 | 4011 | 35678 | 3818 | 13944 | 2680 | 48452 | 4183 |
| Bull Kept | 2004 | 195 | 182 | 55 | 1165 | 147 | 580 | 132 | 1738 | 178 |
| Bull Released | 1791 | 240 | 44 | 15 | 848 | 122 | 799 | 309 | 1654 | 223 |
| Bull Total | 3795 | 392 | 226 | 59 | 2014 | 222 | 1379 | 428 | 3391 | 359 |
| Burbot Kept | 657 | 183 | 0 | 0 | 664 | 203 | 0 | 0 | 595 | 165 |
| Burbot Released | 78 | 42 | 0 | 0 | 66 | 33 | 0 | 0 | 62 | 31 |
| Burbot Total | 736 | 198 | 0 | 0 | 730 | 211 | 0 | 0 | 658 | 172 |
| Kokanee Kept | 2771 | 440 | 3440 | 713 | 380 | 130 | 79 | 48 | 438 | 111 |
| Kokanee Released | 1004 | 197 | 1085 | 350 | 169 | 92 | 64 | 37 | 237 | 51 |
| Kokanee Total | 3775 | 575 | 4525 | 968 | 549 | 195 | 143 | 80 | 674 | 136 |
| Num Anglers | 14475 | 1218 | 4822 | 630 | 7715 | 832 | 2767 | 517 | 10206 | 859 |
| Num Rods | 15952 | 1315 | 4887 | 625 | 8815 | 905 | 2966 | 538 | 11476 | 934 |
| Other Species Kept | 93 | 51 | 14 | 12 | 72 | 49 | 8 | 7 | 84 | 50 |
| Other Released | 25 | 14 | 14 | 12 | 0 | 0 | 17 | 12 | 17 | 12 |
| Other Total | 119 | 54 | 27 | 25 | 72 | 49 | 25 | 14 | 102 | 52 |
| Rainbow Kept | 2813 | 438 | 854 | 242 | 1489 | 242 | 522 | 167 | 1882 | 267 |
| Rainbow Released | 1106 | 137 | 208 | 81 | 493 | 85 | 376 | 91 | 831 | 103 |
| Rainbow Total | 3919 | 478 | 1062 | 271 | 1982 | 244 | 899 | 240 | 2712 | 297 |
| Rod hours | 74127 | 6447 | 23269 | 3876 | 40023 | 4129 | 14715 | 2716 | 53515 | 4499 |


| Year 2004 | All Sites/Zones |  |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 8343 | 8033 | 38120 | 4613 | 38284 | 4617 | 16604 | 3554 | 52767 | 5447 |
| Bull Kept | 2005 | 251 | 326 | 86 | 1104 | 191 | 663 | 214 | 1694 | 228 |
| Bull Released | 1404 | 171 | 101 | 64 | 704 | 108 | 573 | 167 | 1251 | 152 |
| Bull Total | 3409 | 376 | 427 | 117 | 1808 | 245 | 1236 | 370 | 2945 | 333 |
| Burbot Kept | 447 | 155 | 0 | 0 | 387 | 147 | 23 | 17 | 398 | 141 |
| Burbot Released | 23 | 21 | 0 | 0 | 14 | 12 | 0 | 0 | 13 | 11 |
| Burbot Total | 470 | 150 | 0 | 0 | 401 | 144 | 23 | 17 | 410 | 139 |
| Kokanee Kept | 8600 | 1212 | 9178 | 1773 | 1356 | 276 | 159 | 88 | 1399 | 251 |
| Kokanee Released | 6540 | 1135 | 6784 | 1537 | 1317 | 274 | 112 | 39 | 1363 | 234 |
| Kokanee Total | 15140 | 2280 | 15963 | 3221 | 2673 | 479 | 271 | 114 | 2762 | 408 |
| Num Anglers | 17636 | 1745 | 8972 | 1157 | 7640 | 910 | 3202 | 585 | 10460 | 1060 |
| Num Rods | 18974 | 1856 | 9202 | 1179 | 8449 | 965 | 3499 | 623 | 11512 | 1119 |
| Other Species Kept | 35 | 16 | 20 | 13 | 13 | 8 | 0 | 0 | 11 | 7 |
| Other Released | 135 | 37 | 112 | 36 | 0 | 0 | 28 | 16 | 31 | 17 |
| Other Total | 170 | 43 | 131 | 38 | 13 | 8 | 28 | 16 | 43 | 21 |
| Rainbow Kept | 4241 | 593 | 1579 | 313 | 2298 | 429 | 613 | 123 | 2708 | 372 |
| Rainbow Released | 2171 | 315 | 663 | 173 | 1475 | 285 | 225 | 58 | 1552 | 256 |
| Rainbow Total | 6412 | 772 | 2242 | 430 | 3773 | 602 | 837 | 147 | 4260 | 519 |
| Rod hours | 89272 | 8481 | 38683 | 4671 | 41889 | 4835 | 18085 | 3751 | 57646 | 5708 |


| Year 2005 | All Sites/Zones |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Estimate | SE |
| Angler Hours | 76842 | 7476 | 33346 | 5372 | 34986 | 4680 | 16839 | 4319 | 49981 | 5534 |


| Bull Kept | 1933 | 251 | 302 | 75 | 1083 | 179 | 592 | 191 | 1614 | 231 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bull Released | 1374 | 209 | 79 | 43 | 615 | 132 | 698 | 186 | 1301 | 217 |
| Bull Total | 3307 | 400 | 381 | 94 | 1698 | 283 | 1290 | 342 | 2916 | 395 |
| Burbot Kept | 369 | 99 | 0 | 0 | 356 | 94 | 0 | 0 | 345 | 95 |
| Burbot Released | 19 | 17 | 0 | 0 | 18 | 17 | 0 | 0 | 17 | 15 |
| Burbot Total | 388 | 103 | 0 | 0 | 375 | 99 | 0 | 0 | 362 | 98 |
| Kokanee Kept | 6761 | 1329 | 7160 | 1755 | 1144 | 467 | 110 | 56 | 1186 | 433 |
| Kokanee Released | 4601 | 1043 | 4396 | 1583 | 1277 | 402 | 260 | 144 | 1496 | 408 |
| Kokanee Total | 11362 | 2125 | 11556 | 3083 | 2421 | 793 | 371 | 162 | 2682 | 777 |
| Num Anglers | 15939 | 1445 | 7493 | 1070 | 6889 | 904 | 3413 | 806 | 9972 | 1068 |
| Num Rods | 17096 | 1553 | 7689 | 1098 | 7571 | 951 | 3708 | 906 | 10893 | 1135 |
| Other Species Kept | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Released | 34 | 11 | 31 | 13 | 0 | 0 | 7 | 6 | 8 | 7 |
| Other Total | 34 | 11 | 31 | 13 | 0 | 0 | 7 | 6 | 8 | 7 |
| Rainbow Kept | 3271 | 564 | 1450 | 383 | 1620 | 385 | 693 | 186 | 2201 | 472 |
| Rainbow Released | 1822 | 235 | 569 | 147 | 997 | 202 | 486 | 112 | 1423 | 223 |
| Rainbow Total | 5094 | 738 | 2019 | 464 | 2617 | 524 | 1179 | 281 | 3623 | 644 |
| Rod hours | 81901 | 7995 | 34112 | 5527 | 37958 | 4931 | 18200 | 4723 | 54115 | 5857 |


| Year 2006 | All Sites/Zones |  |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 72574 | 7571 | 32408 | 5760 | 27668 | 2960 | 19987 | 4450 | 45325 | 4707 |
| Bull Kept | 1817 | 238 | 264 | 105 | 905 | 142 | 676 | 153 | 1518 | 200 |
| Bull Released | 1736 | 271 | 116 | 103 | 702 | 141 | 916 | 263 | 1567 | 248 |
| Bull Total | 3552 | 463 | 380 | 203 | 1607 | 216 | 1592 | 400 | 3086 | 400 |
| Burbot Kept | 515 | 188 | 7 | 6 | 596 | 282 | 0 | 0 | 513 | 208 |
| Burbot Released | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Burbot Total | 515 | 188 | 7 | 6 | 596 | 282 | 0 | 0 | 513 | 208 |
| Kokanee Kept | 2308 | 472 | 2795 | 728 | 203 | 75 | 61 | 30 | 257 | 76 |
| Kokanee Released | 843 | 228 | 427 | 161 | 303 | 93 | 72 | 40 | 371 | 102 |
| Kokanee Total | 3151 | 629 | 3222 | 825 | 506 | 113 | 133 | 46 | 628 | 118 |
| Num Anglers | 14576 | 1524 | 6334 | 1204 | 6125 | 705 | 3591 | 703 | 9252 | 908 |
| Num Rods | 15110 | 1555 | 5682 | 1030 | 6878 | 789 | 3742 | 727 | 10106 | 991 |
| Other Species Kept | 90 | 52 | 30 | 17 | 81 | 60 | 0 | 0 | 76 | 56 |
| Other Released | 104 | 62 | 95 | 61 | 31 | 29 | 0 | 0 | 30 | 27 |
| Other Total | 195 | 103 | 125 | 65 | 112 | 88 | 0 | 0 | 105 | 83 |
| Rainbow Kept | 3635 | 576 | 1696 | 518 | 1521 | 322 | 877 | 194 | 2257 | 322 |
| Rainbow Released | 1786 | 262 | 160 | 61 | 690 | 136 | 841 | 126 | 1449 | 182 |
| Rainbow Total | 5421 | 757 | 1856 | 550 | 2211 | 386 | 1718 | 277 | 3705 | 434 |
| Rod hours | 74726 | 7774 | 29729 | 5294 | 30724 | 3288 | 20679 | 4515 | 48884 | 5075 |


| Year 2007 | All Sites/Zones |  | Castlegar |  | Nakusp |  |  | Shelter Bay |  | Shelter Bay + Nakusp |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Estimate | SE |
| Angler Hours | 82059 | 8599 | 45789 | 7477 | 31719 | 4079 | 16848 | 3188 | 47157 | 5042 |
| Bull Kept | 1821 | 218 | 327 | 81 | 935 | 137 | 555 | 105 | 1446 | 181 |
| Bull Released | 1184 | 223 | 7 | 7 | 446 | 93 | 559 | 130 | 984 | 157 |
| Bull Total | 3005 | 366 | 334 | 82 | 1381 | 171 | 1114 | 217 | 2430 | 275 |
| Burbot Kept | 466 | 169 | 27 | 24 | 386 | 132 | 0 | 0 | 361 | 126 |
| Burbot Released | 17 | 15 | 0 | 0 | 16 | 15 | 0 | 0 | 14 | 13 |
| Burbot Total | 483 | 165 | 27 | 24 | 402 | 128 | 0 | 0 | 375 | 122 |


| Kokanee Kept | 9009 | 1323 | 10706 | 2332 | 1733 | 495 | 280 | 116 | 1879 | 511 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Kokanee Released | 2816 | 459 | 3644 | 865 | 224 | 114 | 172 | 64 | 417 | 136 |
| Kokanee Total | 11826 | 1703 | 14350 | 3068 | 1957 | 531 | 452 | 145 | 2296 | 554 |
| Num Anglers | 16809 | 1628 | 9230 | 1430 | 6833 | 861 | 3227 | 392 | 9731 | 922 |
| Num Rods | 16939 | 1584 | 7978 | 1173 | 7523 | 925 | 3392 | 404 | 10550 | 975 |
| Other Species Kept | 23 | 16 | 0 | 0 | 0 | 0 | 17 | 12 | 24 | 18 |
| Other Released | 24 | 17 | 0 | 0 | 0 | 0 | 25 | 18 | 22 | 15 |
| Other Total | 48 | 24 | 0 | 0 | 0 | 0 | 42 | 21 | 46 | 23 |
| Rainbow Kept | 3787 | 496 | 2164 | 468 | 1605 | 304 | 798 | 192 | 2248 | 309 |
| Rainbow Released | 1568 | 259 | 504 | 120 | 840 | 232 | 390 | 70 | 1186 | 237 |
| Rainbow Total | 5355 | 561 | 2668 | 529 | 2445 | 379 | 1188 | 214 | 3434 | 403 |
| Rod hours | 82616 | 8311 | 40146 | 6210 | 34660 | 4307 | 17642 | 3216 | 50767 | 5219 |


| Year 2008 | All Sites/Zones |  |  |  | Castlegar |  | Nakusp |  | Shelter Bay |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Shelter Bay + Nakusp |  |  |  |  |  |  |  |  |  |  |
| Variable | Estimate | SE |
| Angler Hours | 69743 | 6743 | 33347 | 5598 | 31459 | 3574 | 14338 | 2007 | 43900 | 3967 |
| Bull Kept | 1437 | 185 | 403 | 124 | 702 | 116 | 440 | 91 | 1077 | 147 |
| Bull Released | 1180 | 205 | 0 | 0 | 404 | 112 | 711 | 170 | 1081 | 185 |
| Bull Total | 2618 | 330 | 403 | 124 | 1106 | 187 | 1151 | 240 | 2158 | 283 |
| Burbot Kept | 454 | 139 | 0 | 0 | 449 | 142 | 0 | 0 | 427 | 133 |
| Burbot Released | 122 | 98 | 0 | 0 | 81 | 60 | 0 | 0 | 79 | 57 |
| Burbot Total | 576 | 189 | 0 | 0 | 530 | 165 | 0 | 0 | 506 | 157 |
| Kokanee Kept | 5249 | 917 | 7851 | 1774 | 189 | 61 | 80 | 43 | 261 | 84 |
| Kokanee Released | 767 | 271 | 479 | 238 | 342 | 142 | 102 | 51 | 433 | 159 |
| Kokanee Total | 6015 | 1090 | 8330 | 1879 | 532 | 168 | 182 | 90 | 694 | 215 |
| Num Anglers | 15190 | 1584 | 6886 | 1169 | 7380 | 847 | 2657 | 389 | 9607 | 931 |
| Num Rods | 15949 | 1619 | 6817 | 1181 | 8039 | 888 | 2773 | 401 | 10342 | 954 |
| Other Species Kept | 117 | 71 | 178 | 123 | 0 | 0 | 5 | 4 | 5 | 5 |
| Other Released | 22 | 5 | 0 | 0 | 0 | 0 | 16 | 2 | 23 | 7 |
| Other Total | 139 | 71 | 178 | 123 | 0 | 0 | 21 | 5 | 28 | 8 |
| Rainbow Kept | 3714 | 704 | 2413 | 893 | 1327 | 210 | 704 | 208 | 1923 | 297 |
| Rainbow Released | 1292 | 267 | 89 | 54 | 736 | 202 | 362 | 83 | 1081 | 212 |
| Rainbow Total | 5006 | 777 | 2502 | 903 | 2062 | 324 | 1066 | 269 | 3004 | 419 |
| Rod hours | 72789 | 6914 | 33059 | 5688 | 34029 | 3731 | 14946 | 2085 | 46937 | 4132 |


| Year 2009 | All Sites/Zones |  | Castlegar |  | Nakusp |  | Shelter Bay |  | Shelter Bay + Nakusp |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Estimate | SE |
| Angler Hours | 76997 | 7229 | 35419 | 6004 | 33987 | 3644 | 16922 | 3099 | 48845 | 4250 |
| Bull Kept | 1621 | 195 | 470 | 134 | 722 | 121 | 567 | 139 | 1205 | 147 |
| Bull Released | 1267 | 229 | 79 | 24 | 418 | 104 | 773 | 322 | 1104 | 189 |
| Bull Total | 2888 | 355 | 549 | 145 | 1140 | 181 | 1340 | 434 | 2309 | 284 |
| Burbot Kept | 456 | 167 | 0 | 0 | 471 | 207 | 0 | 0 | 429 | 169 |
| Burbot Released | 126 | 87 | 0 | 0 | 146 | 112 | 0 | 0 | 130 | 92 |
| Burbot Total | 582 | 245 | 0 | 0 | 617 | 313 | 0 | 0 | 559 | 253 |
| Kokanee Kept | 5796 | 729 | 6957 | 1317 | 801 | 269 | 108 | 66 | 868 | 275 |
| Kokanee Released | 2385 | 611 | 1652 | 460 | 634 | 178 | 201 | 82 | 840 | 214 |
| Kokanee Total | 8182 | 1124 | 8609 | 1591 | 1435 | 374 | 309 | 79 | 1708 | 386 |
| Num Anglers | 15412 | 1378 | 7447 | 1122 | 6460 | 691 | 3389 | 570 | 9568 | 846 |
| Num Rods | 15588 | 1358 | 7057 | 1031 | 6702 | 709 | 3570 | 595 | 9992 | 874 |
| Other Species Kept | 29 | 21 | 53 | 41 | 0 | 0 | 0 | 0 | 0 | 0 |


| Other Released | 110 | 70 | 0 | 0 | 0 | 0 | 93 | 59 | 102 | 63 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Other Total | 139 | 74 | 53 | 41 | 0 | 0 | 93 | 59 | 102 | 63 |
| Rainbow Kept | 3215 | 408 | 2161 | 627 | 988 | 191 | 793 | 191 | 1754 | 235 |
| Rainbow Released | 1330 | 232 | 475 | 199 | 620 | 167 | 404 | 101 | 967 | 139 |
| Rainbow Total | 4545 | 542 | 2637 | 714 | 1608 | 328 | 1197 | 271 | 2721 | 324 |
| Rod hours | 77884 | 7131 | 34082 | 5676 | 35003 | 3707 | 17689 | 3203 | 50629 | 4358 |

APPENDIX 6a. Size statistics for bull trout in the Arrow Lakes Reservoir creel survey from 1998 to 2009. Data for 1998-2002 are from Arndt (2002a, 2004a).

|  |  | Fork Length (cm) |  | Weight (g) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | $\mathbf{N}$ | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range |  | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range |
| 1998 | 169 | $56.9 \pm 1.7$ | $38-85$ | $1,948 \pm 160$ | $500-5,450$ |  |
| 1999 | 96 | $56.0 \pm 1.9$ | $35-81$ | $2,042 \pm 205$ | $350-5,216$ |  |
| 2000 | 105 | $53.3 \pm 2.1$ | $28-82$ | $1,914 \pm 223$ | $425-6,000$ |  |
| 2001 | 233 | $55.3 \pm 1.2$ | $31-89$ | $2,128 \pm 179$ | $350-12,700$ |  |
| 2002 | 231 | $55.0 \pm 1.1$ | $29-82$ | $2,076 \pm 149$ | $123-8,325$ |  |
| 2003 | 248 | $55.8 \pm 1.2$ | $32-88$ | $2,252 \pm 170$ | $370-9,500$ |  |
| 2004 | 263 | $59.2 \pm 1.1$ | $37-88$ | $2,710 \pm 168$ | $600-10,517$ |  |
| 2005 | 269 | $59.7 \pm 1.1$ | $35-83$ | $2,570 \pm 140$ | $420-7,040$ |  |
| 2006 | 240 | $59.2 \pm 1.2$ | $38-83$ | $2,396 \pm 158$ | $405-6,123$ |  |
| 2007 | 235 | $58.0 \pm 1.5$ | $34-90$ | $2,320 \pm 177$ | $396-8,731$ |  |
| 2008 | 181 | $58.4 \pm 1.4$ | $30-82$ | $2,309 \pm 182$ | $340-6,350$ |  |
| 2009 | 217 | $58.6 \pm 1.6$ | $23-87$ | $2,543 \pm 200$ | $160-7,938$ |  |

APPENDIX 6b. Size statistics for rainbow trout in the Arrow Lakes Reservoir creel survey from 1998 to 2009.

|  |  | Fork Length (cm) |  |  | Weight (g) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | $\mathbf{N}$ | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range |  | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range |
| 1998 | 168 | $36.4 \pm 1.5$ | $22-75$ |  | $756 \pm 150$ | $200-5,670$ |
| 1999 | 150 | $35.8 \pm 1.4$ | $23-84$ | $597 \pm 105$ | $100-5,942$ |  |
| 2000 | 225 | $37.7 \pm 0.9$ | $24-75$ | $688 \pm 59$ | $180-3,900$ |  |
| 2001 | 400 | $37.7 \pm 0.8$ | $22-70$ | $690 \pm 60$ | $85-4,762$ |  |
| 2002 | 316 | $42.1 \pm 1.3$ | $23-81$ | $1,162 \pm 141$ | $170-8,000$ |  |
| 2003 | 281 | $40.8 \pm 1.4$ | $20-85$ | $1,144 \pm 177$ | $140-9412$ |  |
| 2004 | 383 | $39.0 \pm 1.4$ | $17-92$ | $1,034 \pm 167$ | $70-12,247$ |  |
| 2005 | 315 | $38.6 \pm 1.3$ | $20-83$ | $971 \pm 853$ | $85-8,620$ |  |
| 2006 | 362 | $37.0 \pm 1.0$ | $18-82$ | $679 \pm 78$ | $85-7,065$ |  |
| 2007 | 364 | $37.3 \pm 0.8$ | $17-81$ |  | $694 \pm 74$ | $56-7,700$ |
| 2008 | 313 | $39.8 \pm 1.1$ | $19-76$ |  | $885 \pm 104$ | $91-6,237$ |
| 2009 | 323 | $40.1 \pm 1.2$ | $17-80$ |  | $924 \pm 112$ | $50-7,800$ |

APPENDIX 6c. Size statistics for kokanee in the Arrow Lakes Reservoir creel survey from 1998 to 2009.

|  |  | Fork Length (cm) | Weight (g) |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | $\mathbf{N}$ | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range | $\mathbf{N}$ | Mean $\pm \mathbf{9 5 \%}$ <br> c.l. | Range |
| 1998 | 104 | $25.2 \pm 0.9$ | $18-34$ | 59 | $172 \pm 13$ | $75-400$ |
| 1999 | 1 | 21.0 | na | 1 | 136 | na |
| 2000 | 2 | 28.5 | na | 2 | 275 | na |
| 2001 | 666 | $25.8 \pm 0.2$ | $17-42$ | 629 | $215 \pm 8$ | $56-963$ |
| 2002 | 123 | $22.5 \pm 0.7$ | $16-41$ | 109 | $138 \pm 19$ | $28-708$ |
| 2003 | 199 | $21.2 \pm 0.4$ | $15-39$ | 190 | $113 \pm 11$ | $28-680$ |
| 2004 | 349 | $22.6 \pm 0.5$ | $13-50$ | 340 | $155 \pm 13$ | $28-1,417$ |
| 2005 | 295 | $23.1 \pm 0.7$ | $15-60$ | 291 | $179 \pm 25$ | $28-2,353$ |
| 2006 | 158 | $24.0 \pm 0.7$ | $16-47$ | 148 | $203 \pm 23$ | $56-1,275$ |
| 2007 | 576 | $24.6 \pm 0.3$ | $15-53$ | 571 | $197 \pm 12$ | $56-2,041$ |
| 2008 | 343 | $24.5 \pm 0.4$ | $17-55$ | 338 | $207 \pm 15$ | $50-1,650$ |
| 2009 | 412 | $24.0 \pm 0.4$ | $12-62$ | 371 | $184 \pm 23$ | $28-3,260$ |

APPENDIX 6d. Size statistics for burbot in the Arrow Lakes Reservoir creel survey from 1998 to 2009.

|  |  | Fork Length (cm) |  | Weight (g) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | $\mathbf{N}$ | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range |  | Mean $\pm \mathbf{9 5 \%}$ c.l. | Range |
| 1998 | 5 | $73.2 \pm 19.8$ | $60-90$ |  | $2019 \pm 1588$ | $900-4130$ |
| 1999 | 18 | $59.1 \pm 4.7$ | $41-76$ |  | $1264 \pm 239$ | $454-2223$ |
| 2000 | 6 | $60.0 \pm 4.8$ | $52-65$ | $1196 \pm 419$ | $700-1700$ |  |
| 2001 | 39 | $63.1 \pm 2.3$ | $50-86$ | $1596 \pm 190$ | $737-3345$ |  |
| 2002 | 78 | $63.8 \pm 1.8$ | $45-84$ |  | $1608 \pm 133$ | $737-3685$ |
| 2003 | 73 | $63.0 \pm 1.5$ | $50-79$ |  | $1601 \pm 105$ | $680-3175$ |
| 2004 | 47 | $64.6 \pm 2.3$ | $51-98$ |  | $1781 \pm 281$ | $737-6690$ |
| 2005 | 55 | $66.1 \pm 1.9$ | $53-84$ | $1944 \pm 187$ | $1020-4365$ |  |
| 2006 | 64 | $65.9 \pm 1.8$ | $46-86$ | $1685 \pm 142$ | $963-3628$ |  |
| 2007 | 60 | $66.8 \pm 1.6$ | $52-88$ |  | $1684 \pm 117$ | $822-3912$ |
| 2008 | 55 | $64.2 \pm 1.9$ | $51.5-87$ |  | $1569 \pm 145$ | $878-3515$ |
| 2009 | 50 | $64.4 \pm 2.3$ | $41.5-89$ |  | $1564 \pm 187$ | $652-4309$ |

APPENDIX 7. Locations of fishing boats on Arrow Lakes Reservoir for 48 flights made between April 2003 and March 2005.


[^0]:    ${ }^{1}$ Earlier reports either did not expand the site estimates or expanded them using a correction factor based on professional judgement.

[^1]:    ${ }^{2}$ Start times were slightly different at the Shelter Bay boat ramp and park because it is located about one hour drive from the nearest community and required the clerk to arrive by hourly ferry. Survey start time was 8:00 AM from April to March when the Shelter Bay campsite is open, and 10:00 AM from November to March (campsite closed).

[^2]:    ${ }^{3}$ Expansion using separate correction factors by zone (Appendix 5) gives slightly higher angler effort totals and higher kokanee catch estimates. See section 2.3.1 for details.

[^3]:    ${ }^{4}$ Average direct (\$51.38) and total (\$171.41) expenditures per angler day were calculated from the total number of freshwater fishing days reported for British Columbia non-resident and resident anglers and "direct recreational fishing expenditures" and "major purchases and investments wholly or partially attributable to recreational angling" in the Survey of Recreational Fishing in Canada in 2005 (Canada Fisheries and Oceans. 2005; http://www.dfo-mpo.gc.ca/stats/rec/can/2005/index-eng.htm, accessed May 26, 2010).

[^4]:    ${ }^{5}$ Calculated from Bray and Campbell (2001) data using only those anglers targeting 'bull trout' or 'any trout' and their catch ( 14 bull trout/100.5 hours).

[^5]:    ${ }^{6}$ Calculated from Bray and Campbell (2001) using only anglers targeting 'rainbow trout' or 'any trout' and their catch (5 fish/71.4 hours).

[^6]:    ${ }^{7}$ Glen Olson, former store owner, Nakusp (pers. comm.); the store is located adjacent to the boat ramp monitored by the creel survey.
    ${ }^{8}$ Obtained by expanding the number of sampled fish in Fig. 10 by 365 days/60 sampled days in a year $x$ the average of the yearly expansion factors for all overflight days pooled in 2003-2005 (1.36).

[^7]:    ${ }^{9}$ Calculated from Bray and Campbell data using anglers targeting kokanee (406 kokanee/1,354 hours).

[^8]:    ${ }^{10}$ An example of the possible discrepancy between Hill Creek spawner size and size of kokanee available for capture is provided by electrofishing data from the upper 8 km of the reservoir below Revelstoke Dam in 1991 and 1992 (R.L.\& L. 1994). About $50 \%$ of the kokanee captured in that area exceeded 30 cm FL ( $\mathrm{n}=81$ ), whereas average spawner length for those years was 21.8 and 22.3 cm , respectively (MFLNRO file data).

[^9]:    ${ }^{11}$ Apparently, when this survey was started (late 1970s) most of the stores in the area were closed on Mondays. So the Monday was treated as its own daytype because there tended to be more fishing effort then.

