092B.094 092B.094

Sensitive Ecosystems Inventory of East Vancouver Island and Gulf Islands

This second version of the SEI maps is an update of the ones that were published in 1997. The new

It is critical that all possible land use options be evaluated before initiating any further changes to

A planner: ensure that conservation is given as high a priority as other community programs such as

Controlling land and water access to fragile ecosystems by using appropriate management tools

Controlling invasive species including plants, feral animals and pets by using active control methods

Himalayan Blackberry, Yellow Flag Iris, Purple Loosestrife and Spurge Laurel.

Allowing natural disturbances to occur because natural ecological functions are critical to the

such as fencing, trails, elevated boardwalks, railings, seasonal restrictions, signs and

such as hand clearing, pruning, mowing, excavation, animal fencing and planting of

appropriate native species, and discouraging plantings of Scotch Broom, English Ivy,

maps identify those portions of the original SEI polygons that have been disturbed - by logging, urban these rare and fragile ecosystems. Direct and indirect impacts to these ecosystems can be avoided

awareness of the escalating loss of natural ecosystems and to encourage conservation of those that

Creating vegetated buffers around sensitive ecosystems to isolate the ecosystem from outside

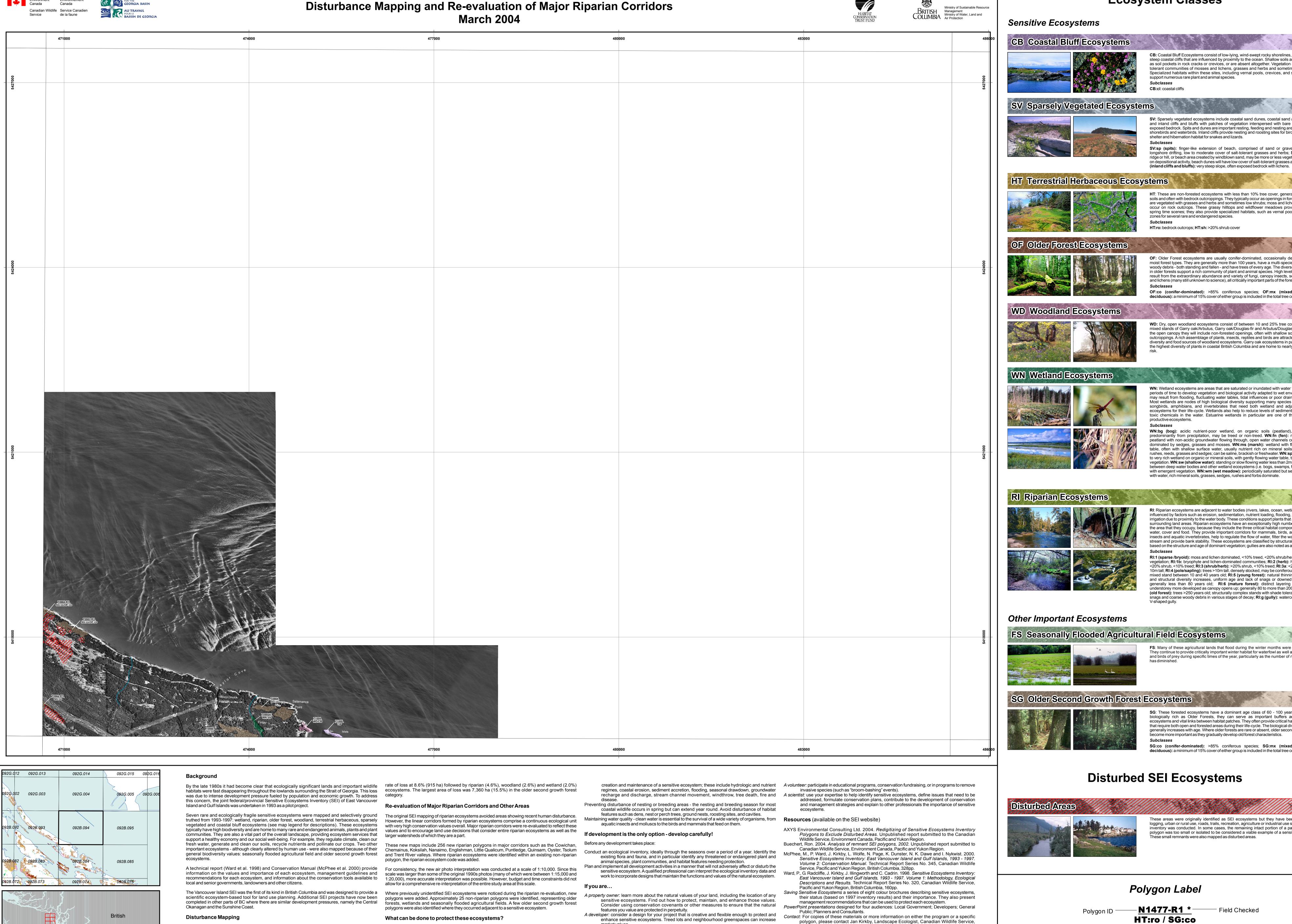
livestock restrictions.

or rural use, roads, trail(s), recreation, agriculture or industrial use - over the past decade. The

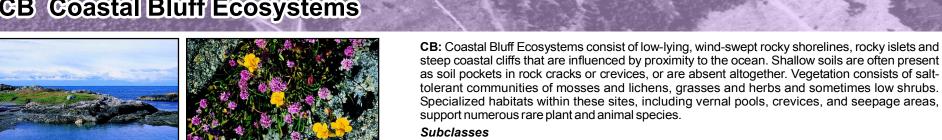
disturbed areas identified have been retained on the maps (see red hatched areas) to increase

The areas of disturbance were identified by digitally overlaying the original polygons (identified on air

photos taken primarily between 1990 and 1992) on more recent photographs taken in late July and


early August 2002 (AXYS 2004). In addition, the intact remnants of each altered polygon were

Results of this disturbance mapping showed that over 8,800 ha (11%) of the area occupied by the


nine SEI ecosystem types in the early 1990s had been disturbed by 2002. Over 1.480 ha of disturbed

area had originally been occupied by the seven sensitive ecosystems. Older forests had the highest

reviewed to determine if they still qualified for inclusion in the SEI (Buechert 2004).

Ecosystem Classes

SV: Sparsely vegetated ecosystems include coastal sand dunes, coastal sand and gravel spits and inland cliffs and bluffs with patches of vegetation interspersed with bare sand, gravel or exposed bedrock. Spits and dunes are important resting, feeding and nesting areas for migrating shorebirds and waterbirds. Inland cliffs provide nesting and roosting sites for birds and bats, and shelter and hibernation habitat for snakes and lizards.

SV:sp (spits): finger-like extension of beach, comprised of sand or gravel deposited by longshore drifting, low to moderate cover of salt-tolerant grasses and herbs; SV:du (dunes): ridge or hill, or beach area created by windblown sand, may be more or less vegetated depending on depositional activity, beach dunes will have low cover of salt-tolerant grasses and herbs; SV:cl

HT: These are non-forested ecosystems with less than 10% tree cover, generally with shallow soils and often with bedrock outcroppings. They typically occur as openings in forested areas and are vegetated with grasses and herbs and sometimes low shrubs; moss and lichen communities occur on rock outcrops. These grassy hilltops and wildflower meadows provide spectacular spring time scenes; they also provide specialized habitats, such as vernal pools and seepage zones for several rare and endangered species.

HT:ro: bedrock outcrops; HT:sh: >20% shrub cover

OF: Older Forest ecosystems are usually conifer-dominated, occasionally deciduous, dry to moist forest types. They are generally more than 100 years, have a multi-species canopy, large woody debris - both standing and fallen - and have trees of every age. The diverse habitats found in older forests support a rich community of plant and animal species. High levels of biodiversity result from the extraordinary abundance and variety of fungi, canopy insects, soil invertebrates and lichens (many still unknown to science), all critically important parts of the forest ecosystem.

OF:co (conifer-dominated): >85% coniferous species; OF:mx (mixed conifer and deciduous): a minimum of 15% cover of either group is included in the total tree cover

ND: Dry, open woodland ecosystems consist of between 10 and 25% tree cover and include mixed stands of Garry oak/Arbutus, Garry oak/Douglas-fir and Arbutus/Douglas-fir. Because of the open canopy they will include non-forested openings, often with shallow soils and bedrock outcroppings. A rich assemblage of plants, insects, reptiles and birds are attracted to the habitat diversity and food sources of woodland ecosystems. Garry oak ecosystems in particular support the highest diversity of plants in coastal British Columbia and are home to nearly 100 species at

periods of time to develop vegetation and biological activity adapted to wet environments. This may result from flooding, fluctuating water tables, tidal influences or poor drainage conditions. Most wetlands are nodes of high biological diversity supporting many species such as ducks. songbirds, amphibians, and invertebrates that need both wetland and adjacent terrestrial ecosystems for their life-cycle. Wetlands also help to reduce levels of sediments, nutrients and toxic chemicals in the water. Estuarine wetlands in particular are one of the world's most

WN:bg (bog): acidic nutrient-poor wetland, on organic soils (peatland), water source predominantly from precipitation, may be treed or non-treed. WN:fn (fen): nutrient-medium peatland with non-acidic groundwater flowing through, open water channels common, usually dominated by sedges, grasses and mosses. WN:ms (marsh): wetland with fluctuating water table, often with shallow surface water, usually nutrient rich on mineral soils, dominated by rushes, reeds, grasses and sedges; can be saline, brackish or freshwater. WN:sp (swamp): poor to very rich wetland on organic or mineral soils, with gently flowing water table, treed or shrubby vegetation. WN:sw (shallow water): standing or slow flowing water less than 2m deep, transition between deep water bodies and other wetland ecosystems (i.e. bogs, swamps, fens, etc.), often with emergent vegetation. WN:wm (wet meadow): periodically saturated but seldom inundated with water, rich mineral soils, grasses, sedges, rushes and forbs dominate.

RI: Riparian ecosystems are adjacent to water bodies (rivers, lakes, ocean, wetlands) which are influenced by factors such as erosion, sedimentation, nutrient loading, flooding, and subsurface irrigation due to proximity to the water body. These conditions support plants that are distinct from surrounding land areas. Riparian ecosystems have an exceptionally high number of species for the area that they occupy, because they include the three critical habitat components for wildlife water, cover and food. They provide important corridors for mammals, birds, amphibians, fish, insects and aquatic invertebrates, help to regulate the flow of water, filter the water entering the stream and provide bank stability. These ecosystems are classified by structural stage, which is based on the structure and age of dominant vegetation; gullies are also noted as a subcategory.

RI:1 (sparse /bryoid): moss and lichen dominated, <10% treed, <20% shrub/herb; RI:1a: <10% vegetation; RI:1b: bryophyte and lichen-dominated communities; RI:2 (herb): herb dominated, <20% shrub, <10% treed; RI:3 (shrub/herb): >20% shrub, <10% treed; RI:3a: <2m tall; RI:3b: 2-10m tall; RI:4 (pole/sapling): trees >10m tall, densely stocked, may be coniferous, deciduous, or mixed stand between 10 and 40 years old; RI:5 (young forest): natural thinning has occurred and structural diversity increases, uniform age and lack of snags or downed logs; trees are generally less than 80 years old; RI:6 (mature forest): distinct layering of the canopy, understorey more developed as canopy opens up; generally 80 to more than 200 years old; RI:7 (old forest): trees >250 years old; structurally complex stands with shade tolerant tree species; snags and coarse woody debris in various stages of decay; RI:g (gully): watercourse is within a

FS: Many of these agricultural lands that flood during the winter months were once wetlands. They continue to provide critically important winter habitat for waterfowl as well as for shorebirds and birds of prey during specific times of the year, particularly as the number of natural wetlands

G: These forested ecosystems have a dominant age class of 60 - 100 years. While not as biologically rich as Older Forests, they can serve as important buffers around sensitive ecosystems and vital links between habitat patches. They often provide critical habitat for species that require both open and forested areas during their life-cycle. The biological diversity of forests generally increases with age. Where older forests are rare or absent, older second growth forests become more important as they gradually develop old forest characteristics.

deciduous): a minimum of 15% cover of either group is included in the total tree cover.

Disturbed SEI Ecosystems

These areas were originally identified as SEI ecosystems but they have been disturbed by logging, urban or rural use, roads, trails, recreation, agriculture or industrial use since the original inventory was conducted. In some cases, the remaining intact portion of a partially disturbed polygon was too small or isolated to be considered a viable example of a sensitive ecosystem. These small remnants were also mapped as disturbed areas.

Scale: 1:20,000

UTM Projection, NAD83

March 2004

Encourage use of the many legal and planning tools available, such as development permit Acknowledgments areas, tree protection by-laws, and conservation covenants to protect sensitive ecosystems

housing, transportation, recreation, employment, public works, and community services.

voluntary stewardship programs. As a member of one of these groups, you can work

cooperatively with local governments to promote land use decisions that protect sensitive

as described in the Conservation Manual (McPhee et al. 2000).

implementation of biodiversity conservation strategies.

ecosystems.

(Conservation Data Centre) and Water, Land and Air Protection, and the Habitat Conservation Trust Fund. SEI projects have also received support and funding from regional districts, local governments and industry. Disturbance Mapping and Plot Generation: AXYS Environmental Consulting Ltd, Sidney, B.C. Remnant and Riparian Assessments: Ron Buechert, Qualicum Beach, B.C. clubs, land trusts, and conservancies often provide a link between local landowners and Photo Credits: Neil K. Dawe, Trudy Chatwin, Mark Kaarremaa, Marlene Caskey, Nick Page, Colleen

Environment Canada at Jan.Kirkby@ec.gc.ca or *tel:* 604.940.4657, *cell:* 250.616.3234

Website: http://srmwww.gov.bc.ca/sei/index.html

Sensitive Ecosystems Inventories are a joint federal/provincial initiative of Environment Canada disturbance such as windthrow, invasive species colonization, and increased light and A decision-maker (such as a politician or government manager): ensure that protection of remaining (Canadian Wildlife Service), the BC Ministries of Sustainable Resource Management sensitive ecosystems is a priority at all levels, and support plans and programs that will help protect sensitive ecosystems. Encourage and facilitate the development and A member of an advocacy group: contribute your time and expertise to help locate and protect sensitive ecosystems. For example, ratepayers' groups, service organizations, naturalist

092B.094