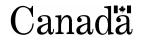
Sensitive Ecosystems Inventory: Vernon Commonage 2005

Volume 1: Methods, Ecological Descriptions, Results, Conservation Analysis, and Management Recommendations


Kristi Iverson, Iverson & MacKenzie Biological Consulting Ltd.

Acknowledgements

The Steering Committee for the Vernon Commonage Sensitive Ecosystems Inventory has provided project management, guidance and direction throughout the project:

Helen Davis Project Coordinator

Carmen WongSusan Latimer
Barbara Pryce

Allan Brooks Nature Centre
Ministry of Environment
The Nature Conservancy

Susan Abbott Greater Vernon Services Commission

Dale Danallanko City of Vernon

Peter Tassie North Okanagan Parks & Natural Areas Trust

Christine LeFloch Regional District of North Okanagan

Keith Louis Okanagan Indian Band **Dale Donovan** Okanagan College

The project was funded by The Real Estate Foundation of BC¹, the BC Ministry of Environment, the Habitat Stewardship Program², the Greater Vernon Services Commission, and the Allan Brooks Nature Centre.

Project management and extension was provided by *Helen Davis*. Field work was completed by *Kristi Iverson*³, *Polly Uunila*⁴, and *Allison Haney*⁵. Bioterrain mapping was completed by *Polly Uunila* and ecosystem mapping was completed by *Kristi Iverson*. *Bon Lee*⁶ completed digital and cartography work.

This project has adapted material from the reports for the Bella Vista – Goose Lake Range Sensitive Ecosystems Inventory⁷ and Central Okanagan Sensitive Ecosystems Inventory⁸.

Carmen Wong provided accommodation for the field crew.

We would like to thank the many landowners that gave us permission to access their lands for field sampling.

Helen Davis and **Carmen Wong** reviewed the draft version of this report.

⁵ Ophiuchus Consulting

¹ The mission of the Real Estate Foundation is to support sustainable real estate and land use practices for the benefit of British Columbians.

² The Habitat Stewardship Program for Species at Risk is a partnership-based, conservation initiative sponsored by the Government of Canada. The Program is managed cooperatively by Environment Canada, the Department of Fisheries and Oceans and Parks Canada, and is administered by Environment Canada.

³ Iverson & MacKenzie Biological Consulting Ltd.

⁴ Polar Geoscience

⁶ Baseline Geomatics Inc.

⁷ Iverson 2003

⁸ Iverson and Cadrin 2003

Abstract

The Okanagan Basin of British Columbia has very high biodiversity, including many vulnerable, rare and endangered species and plant communities. A high diversity of ecosystems occurs in close proximity, providing habitat for many species. The region has been subject to extensive agricultural conversion, intense human settlement pressure, noxious weed invasion, uncontrolled motorized recreation, and forest ingrowth and encroachment associated with fire exclusion.

The Vernon Commonage area was identified in the Greater Vernon Natural Features Inventory⁹ as having a wide variety of site conditions including many rare and unique elements. Recently a large portion of the Commonage was annexed into the City of Vernon and options for future development are under discussion. The area is a vital portion of the north – south corridor in the Okanagan Valley and is facing further development pressures.

The Vernon Commonage SEI was initiated in 2004 to provide inventory information on rare and fragile ecosystems that can be used for ecologically sustainable land use and development planning. We used Terrestrial Ecosystem Mapping (TEM) as a base to develop a Sensitive Ecosystems theme map. The inventory was compiled through aerial photograph interpretation and field sampling in the summer of 2005. The project area covers private land, provincial parks, and small areas of crown land. This technical report documents inventory methods and results, the conservation analysis, and provides management recommendations.

Thirty-one percent of the study area is comprised of sensitive ecosystems (SE); fourteen percent of the area was included in the other important ecosystem (OIE) categories. Wetlands, old forests, riparian ecosystems, and broadleaf woodlands were extremely rare in the study area. Although greater areas of intact grasslands, coniferous woodlands, and sparsely vegetated ecosystems remained, much of the area was covered by altered ecosystems including extensive agricultural fields, young forests, and some disturbed grasslands. Remaining grasslands are at risk to invasive plant species introduction or spread.

Many of the sensitive ecosystems are at high risk from human settlement, including loss, fragmentation, or further degradation by human use and invasion by non-native plants. Many forested areas have become thick with ingrowth and are at risk of loss to catastrophic wildfires. These areas provide many social values including recreation opportunities and increased property values. With the study area supporting many remaining rare and fragile ecosystems, it is paramount to balance the retention and ecological sustainability of sensitive ecosystems with sustainable land development.

⁹ Clarke et al. 1993

Table of Contents

A	ACKNOWLEDGEMENTS	III
A	ABSTRACT	IV
T	TABLE OF CONTENTS	V
L	JST OF FIGURES	VII
L	JST OF TABLES	VII
U	JSING THE REPORT	VIII
1	INTRODUCTION	1
	1.1 Study Area	1
	1.2 ECOLOGICAL IMPORTANCE OF THE STUDY AREA	
2	ECOSYSTEMS OF CONCERN	4
	2.1 What are Sensitive Ecosystems?	
	2.2 WHY ARE THESE ECOSYSTEMS IMPORTANT?	
	Ecological Attributes	
3		
	3.1 LANDSCAPE FRAGMENTATION	
	3.2 DISRUPTION OF NATURAL DISTURBANCE REGIME	8
	3.3 INVASIVE SPECIES	
	3.4 EDGE EFFECTS	
	3.5 DIRECT IMPACTS	
4		
4		
	4.1 TERRESTRIAL ECOSYSTEM MAPPING	
	4.2 Sensitive Ecosystems Mapping Field Sampling and Conservation Evaluation of Sensitive Ecosystems	
	4.3 MAPPING LIMITATIONS	
5	INVENTORY RESULTS	15
	SEI Summary Results	15
6	CONSERVATION ANALYSIS	19
	6.1 Conservation analysis methods	20
	6.2 Management of Conservation Zones	25
	Management of Core Conservation Areas (CCA)	
	Management of Buffers	
	Management of Corridors	
7		
-	7.1 GOALS	
	7.2 CITY AND REGIONAL DISTRICT PLANNING	
	Develop a 'Local Ecosystems Plan'	27
	Develop a Conservation Strategy	
	Official Community Plan	
	Additional Policies for Wetland and Riparian Ecosystems Other Local Government Policies and Plans	

	7.3	Land Development Carefully	
		s for the Protection of Sensitive Ecosystems	
	7.4	GENERAL MANAGEMENT RECOMMENDATIONS	
		in Natural Vegetated Buffers Around and Corridors Between Sensitive Ecosystems	
		d Direct and Indirect Impacts	
		Land Development Carefully	
	7.5	INCORPORATING SEI INFORMATION INTO ENVIRONMENTAL IMPACT ASSESSMENTS	
8	WE	ΓLAND	36
	8.1	WHAT ARE WETLAND ECOSYSTEMS?	36
	8.2	WHY ARE THEY IMPORTANT?	
	8.3	STATUS	
	8.4	MANAGEMENT RECOMMENDATIONS	
9	RIP	ARIAN	4 1
	9.1	WHAT ARE RIPARIAN ECOSYSTEMS?	4 1
	9.2	WHY ARE THEY IMPORTANT?	
	9.3	STATUS	
	9.4	MANAGEMENT RECOMMENDATIONS'	
10	OLI) FOREST	47
	10.1	WHAT ARE OLD FOREST ECOSYSTEMS?	47
	10.1	WHY ARE THEY IMPORTANT?	
	10.2	STATUS	
	10.4	MANAGEMENT RECOMMENDATIONS.	
		ASSLANDS	
11	GK		
	11.1	WHAT ARE GRASSLAND ECOSYSTEMS?	
	11.2	WHY ARE THEY IMPORTANT?	
	11.3	STATUS	
	11.4	MANAGEMENT RECOMMENDATIONS	55
12	BRO	DADLEAF WOODLANDS	58
	12.1	WHAT ARE BROADLEAF WOODLAND ECOSYSTEMS?	58
	12.2	WHY ARE THEY IMPORTANT?	
	12.3	Status	
	12.4	MANAGEMENT RECOMMENDATIONS	60
13	CO	NIFEROUS WOODLANDS	63
	13.1	WHAT ARE CONIFEROUS WOODLAND ECOSYSTEMS?	63
	13.1	WHY ARE THEY IMPORTANT?	
	13.3	STATUS	
	13.4	MANAGEMENT RECOMMENDATIONS.	
14	SPA	RSELY VEGETATED	
	14.1	WHAT ARE SPARSELY VEGETATED ECOSYSTEMS?	69
	14.1	WHY ARE THEY IMPORTANT?	
	14.2	STATUS	
	14.4	MANAGEMENT RECOMMENDATIONS.	
15		TURE FOREST	
	15.1	WHAT ARE MATURE FOREST ECOSYSTEMS?	
	15.2	WHY ARE THEY IMPORTANT?	
	15.3	Status	
	15.4	MANAGEMENT RECOMMENDATIONS	76

16]	DISTURBED GRASSLANDS	78
16.		
16.2 16.2		
16.4		
17	FUTURE DIRECTIONS	82
REFE	RENCES	83
APPE	NDIX A: SEI DATA	85
APPE ECOS	NDIX B: SENSITIVE ECOSYSTEMS (SEI) UNITS AND RELATED TERRESTRIAL SYSTEM MAPPING (TEM) UNITS	86
	NDIX C. KNOWN AND POTENTIAL THREATENED AND ENDANGERED 'EBRATE ANIMALS IN THE STUDY AREA	88
LICI		00
List	t of Figures	
Figure	e 1. Vernon Commonage SEI study area outlined in red	2
Figure	e 2. Overview of study area	3
Figure	e 3. Cheatgrass (left) and knapweed plant in its first year (right).	10
	e 4. Relative proportion of sensitive ecosystems, other important ecosystems, and modified and and area	
(e 5. Map of Sensitive and Other Important Ecosystems map for the study area. The first component of each polygon is shown in colour and the presence of other sensitive components is shown with cross hatching but does not specifically indicate which Sensitive Other Important Ecosystem is present.	
Figure	e 6. Conservation rating map. Higher conservation values are shown in darker colours	22
Figure	e 7. Conservation zones.	24
List	t of Tables	
Table	Sensitive ecosystems mapped in the study area including the code, name and description.	
	Other important ecosystems mapped in the study area including the code, name and description.	5
Table	3. Number of sites field sampled by ecosystem type	14
Table	4. Area of sensitive ecosystems and other important ecosystems in the study area	17
5	5. The distribution of different ecosystem units in the study area, their provincial conservations tatus, the Sensitive or Other Important Ecosystem unit(s) that they fall into, and the area (land percentage of the study area that they occupy. Some ecological communities may fall	ha)

into more than one Sensitive or Other Important Ecosystem category where they h different ecological conditions or different site sensitivities. Some red-listed and blu ecosystems may fall partially into the 'Not Sensitive' category because they have be	e-listed
and are poor condition examples of the ecological community	18
Table 6. Relative ecosystem values for sensitive ecosystems	20
Table 7. Values assigned to each quality and condition rating	21
Table 8. Species and life requisites used to assign wildlife values to polygons	21
Table 9. Structural stages of riparian ecosystems	41
Table 10. Structural stages of coniferous woodland ecosystems	63

Using the Report

This report presents information on sensitive ecosystems in the Vernon Commonage of the North Okanagan Valley, and provides guidance regarding their conservation and management.

Chapter 1: Introduction sets the context of the SEI project by describing the importance of both biodiversity and the study area.

Chapter 2: Ecosystems of concern outlines the importance of sensitive ecosystems, and the need for concern about them.

Chapter 3: Impacts of concern describes the types of impacts that threaten sensitive ecosystems.

Chapter 4: Methods and limitations explains how the mapping was completed and limitations of the mapping.

Chapter 5: Inventory results describes and shows a map of the status of sensitive ecosystems in the study area.

Chapter 6: Conservation analysis describes the methods used in the conservation analysis and the results of the analysis.

Chapter 7: Planning and management outlines conservation and land management planning options for the City of Vernon, Regional District of North Okanagan, and landowners.

The Central Okanagan Sensitive Ecosystems Inventory report¹⁰ provides detailed information on conservation tools that are directly applicable to ecosystems in the North Okanagan.

Chapters 8 through **16** profile each of the seven sensitive ecosystems and two other important ecosystems. Each chapter describes the specific ecosystem, and its status and importance in the

Sensitive Ecosystems Inventory: Vernon Commonage, 2005

¹⁰ Iverson and Cadrin 2003. Contact Todd Cashin at the Regional District of the Central Okanagan for more information.

study area. Impacts and management recommendations specific to the ecosystem are also discussed.

Chapter 17: Future directions presents recommendations for using the SEI, updating SEI products, and extending the inventory's coverage.

There are two companion volumes to this one for people who need or are interested in more technical information on ecosystem mapping (Volume 2) and wildlife habitat mapping (Volume 3).

Volume 2¹¹ provides detailed information on *terrestrial ecosystem mapping* (TEM) methods and gives descriptions of each of the ecosystems that occur within the sensitive ecosystems or other important ecosystems categories. Appendix B of Volume 1 provides tables that can be used to cross-reference between sensitive and other important ecosystems units and ecosystem mapping units in the ecosystem mapping report.

Volume 2 includes information on methods, results and recommendations for the *terrain mapping*. It is intended for use by professionals that require more detailed ecological and terrain information. It is recommended for use by people interested in developing other interpretive map themes from the ecosystem or terrain mapping.

Volume 3¹² contains wildlife habitat mapping themes developed from the terrestrial ecosystem mapping (TEM) for the following eleven species: Great Basin Spadefoot (*Spea intermontana*), Painted Turtle (*Chrysemys picta*), Western Rattlesnake (*Crotalus oreganus*), Gopher Snake (*Pituophis catenifer* ssp. *deserticola*), Western Screech-owl (*Megascops kennicottii* ssp. *macfarlanei*), Long-billed Curlew (*Numenius americanus*), Yellow-breasted Chat (*Icteria virens*), Grasshopper Sparrow (*Ammodramus savannarum*), Swainson's Hawk (*Buteo swainsonii*), Spotted Bat (*Euderma maculatum*), and Badger (*Taxidea taxus jeffersonii*). All of these species are considered at risk in the province of B.C. and most are listed under the federal Species at Risk Act. These species provide a cross-section of threatened or endangered amphibians, reptiles, birds, and mammals that depend on a range of different ecosystems in the study area. There are many other threatened and endangered species that likely occur in the study area and are listed in each ecosystem chapter of Volume 1.

Wildlife habitat mapping portrays the potential importance of each ecosystem to specific animal species through a species-habitat model. The model assigns ratings to different ecosystem units from the TEM based on the needs of the species for particular life requisites. These ratings are displayed on the wildlife habitat maps. Volume 3 is intended for professionals who require more detailed information on wildlife habitat values in the study area than Volume 1 provides.

¹¹ Iverson and Uunila 2005

¹² Haney and Sarell 2005

1 Introduction

The Okanagan Valley is an area of tremendous biological, ecological and geological diversity. However, many ecosystems have been lost, significantly modified, or fragmented; these ecosystems continue to be primarily threatened by urban and agricultural development. The valley provides a vital north – south corridor connecting the Great Basin to the south with other dry interior valleys of British Columbia. The Vernon Commonage encompasses the northern portion of a ridge that extends from Kelowna to Vernon in the North Okanagan. This forms a significant portion of the north end of the valley and has a diverse assemblage of relatively intact ecosystems that support many species at risk and other important species.

The Allan Brooks Nature Centre and Ministry of Environment initiated this project to develop an inventory information base and conservation analysis to support sound land management decisions and promote effective stewardship of sensitive ecosystems in the Vernon Commonage of the North Okanagan. The project provides the City of Vernon and Regional District of North Okanagan with data that can be used in revising their Official Community Plans and provides information to input into Neighbourhood and Parks Plans. This product contributes to the tools and information required to develop and assess broad conservation and development options for the study area.

This report describes inventory methods and results, rare and fragile ecosystems of the Vernon Commonage, highlights their values and importance, and offers practical advice on how to best avoid or minimize damage to them.

The Vernon Commonage SEI follows from the Bella Vista – Goose Lake Range SEI¹³, Central Okanagan SEI¹⁴, and Vancouver Island SEI¹⁵. Many of the materials in this report have been adapted from the reports of those SEI projects.

1.1 Study Area

The study area (Figure 1) lies within the north Okanagan Valley of south-central British Columbia. It is bounded by the urban extent of the City of Vernon in the north, Okanagan Lake in the west, Kalamalka Lake in the east, and the District of Lake Country in the south. The area covers 6,728 ha and includes private land, provincial parks, Department of National Defence (DND) land, and small areas of provincial crown land within the Interior Douglas-fir very dry, hot, Okanagan variant biogeoclimatic subzone¹⁶. The study area is located within the Southern Interior *Ecoprovince*¹⁷,

¹⁴ Iverson and Cadrin 2003

¹³ Iverson 2003

¹⁵ McPhee et al. 2000

¹⁶ The BC Ministry of Forests *Biogeoclimatic Ecosystem Classification* (BEC) is a system of classifying vegetation based on climatic and topographic patterns. The BEC system was developed by the Ministry of Forests to provide a basis for natural resource management, particularly forest and range management. See Pojar et al. 1987 for further information.

¹⁷ The ecoregional classification system was developed and adapted by the former Ministry of Environment, Lands & Parks, Wildlife Branch, to provide a systematic view of the small scale ecological relationships within British Columbia. An *Ecoprovince* is an area of consistent climate or oceanography, and physiography, of a size useful for provincial overview-planning. See Demarchi 1996 for further information.

the northern extension of the Columbia Basin that extends south to Oregon and lies within the North Okanagan Basin *Ecosection*¹⁸, a wide trench formed by parallel fault lines and further carved out by multiple glaciations.

The Okanagan Valley experiences some of the warmest and driest weather conditions in the province. The valley lies in the rain shadow of the Coast and Cascade Mountains; this results in low precipitation in both winter and summer. In summer, hot dry air moves in from the Great Basin to the south, and very hot temperatures are common; however, the presence of Okanagan Lake (a large, glacial-relic lake), moderates these temperatures somewhat by cooling the air in summer and warming it in winter.

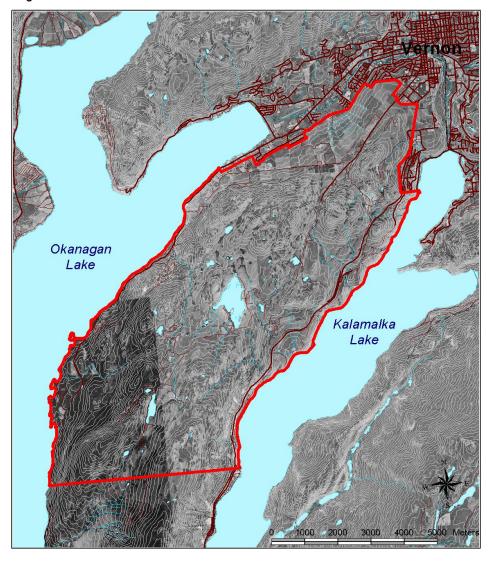


Figure 1. Vernon Commonage SEI study area outlined in red.

¹⁸ An *Ecosection* is a subdivision of an Ecoprovince and is an area with minor physiographic and macroclimatic or oceanographic differences.

1.2 Ecological Importance of the Study Area

The Okanagan Valley is a region of nearly unparalleled biological diversity within British Columbia, Canada, and North America. The complex terrain of the area, combined with a semi-arid climate moderated by the influence of Lake Okanagan has resulted in a wide diversity of ecosystems and organisms in relatively close proximity to one another. The terrain and presence of glacial-relict lakes distinguish the Okanagan Valley from the broad Columbia Basin to the south. Increasingly, scientists are finding that populations at the edge of their range, such as those in the Okanagan, are likely to persist longer than core populations during population declines. This phenomenon may allow these populations to adapt to future changes such as global warming¹⁹.

The Okanagan Valley is a north to south corridor that connects the dry interior valleys of British Columbia to southern grassland ecosystems of the Columbia Basin in the U.S. The valley is a corridor for migrating birds and a point of entry for organisms entering into B.C.'s dry interior from the Columbia Basin.

The Vernon Commonage was identified in the Vernon Natural Features Inventory²⁰ as an area that is regionally important for bird life, including a provincially significant year-round concentration of raptors. The area is relatively large and natural, only partly fragmented by roads and development, and has a great diversity of ecosystems, plant and wildlife species, landforms, and bedrock geology. The area received a very high importance ranking in the Natural Features Inventory for rare species and communities. With proper planning and management, the natural features of the study area provide the potential for long-term viability of many endangered species and sensitive ecosystems. The area may be an important area for the northward migration of species during global warming. Finally, the area provides many community values including aesthetics, hiking, and observing wildlife and nature.

Figure 2. Overview of study area.

¹⁹ Scudder 1991

²⁰ Clarke et al. 1993

2 Ecosystems of Concern

2.1 What are Sensitive Ecosystems?

This sensitive ecosystems project recognises both **sensitive ecosystems** (SE) and **other important ecosystems** (OIE) in the study area. Sensitive ecosystems refer to seven ecosystem types (Table 1) that are ecologically fragile or are rare in the provincial landscape and are relatively unmodified by human influences²¹ (Table 1). These sensitive ecosystems are generalised groupings of ecosystems that share many characteristics, particularly ecological sensitivities, ecological processes, rarity, and wildlife habitat values. These categories were adopted from the Central Okanagan SEI.

Other important ecosystems are partially modified ecosystems that provide many natural values including wildlife habitat, wildlife corridors, buffers between developed areas and sensitive ecosystems, and sources of potential recruitment for some sensitive ecosystems (Table 2).

Within developed landscapes, sensitive and other important ecosystems provide natural areas with intrinsic value and critical habitats for many species. They provide ecological functions that regulate the climate, clean freshwater, regulate and clean soils, maintain genetic diversity, maintain the water cycle, recycle nutrients, and pollinate crops. They are vital in creating healthy and attractive communities for people.

Table 1. Sensitive ecosystems mapped in the study area including the code, name and description.

Code	Sensitive Ecosystems	Ecosystem Description
WN	Wetlands	Non-forested ecosystems where the water table is at or near the surface; includes wet meadows (WN:md), marshes (WN:ms), and shallow open water (WN:sw) ecosystems including ponds
RI	Riparian	Streamside ecosystems in gullies with intermittent or permanent creeks (gully, RI:gu); and fringe ecosystems associated with pond and lake shorelines (fringe, RI:ff).
OF	Old Forest	Forest ecosystems dominated by large, old trees; excludes old riparian forests; includes old Coniferous Woodlands and old Broadleaf Woodlands.
GR	Grasslands	Ecosystems dominated by bunchgrasses (grassland ; GR:gr) and shrubland (GR:sh) ecosystems that occur in a grassland matrix
BW	Broadleaf Woodlands	Ecosystems dominated by trembling aspen (BW:ac) occurring in depressions and moist areas in grasslands; old Broadleaf Woodlands are part of the Old Forest category.
WD	Coniferous Woodlands	Open stands of Douglas-fir or ponderosa pine, often on shallow soils, with typically grassy understories; old Coniferous Woodlands are part of the Old Forest category.
SV	Sparsely Vegetated	Shrubby rock outcrops (shrub ; SV:sh), grassy or unvegetated rock outcrops (SV:ro), talus (SV:ta) slopes, and cliffs (SV:cl)

²¹ Ward et al. 1998

Table 2. Other important ecosystems mapped in the study area including the code, name and description.

Code	Other Important Ecosystems	Ecosystem Description
MF	Mature Forest	Forests dominated by mature trees; includes broadleaf (MF:bd) forests, coniferous (MF:co) forests, and mixed (MF:mx) deciduous and coniferous forests; excludes mature riparian forests and mature coniferous and broadleaf woodlands
DG	Disturbed Grasslands	Disturbed grasslands are grasslands with some noxious or invasive plants (20 to 50% of the vegetation cover in the plant community)

2.2 Why are these ecosystems important?²²

The ecological attributes and socio-economic values that are common to all SEI ecosystems are discussed below. Values and attributes unique to individual ecosystems are discussed in Chapters 8 – 16.

Ecological Attributes

Rarity is a primary feature of sensitive ecosystems. Rarity can be due to limited natural occurrence or the result of human activities since European settlement in the late 1800's. Most rare species or natural plant communities in the study area are considered to be rare both because they are restricted in distribution or abundance, and because their extent and densities have been reduced and fragmented.

Rare natural plant communities and vertebrate species are listed for each sensitive ecosystem (Chapters 8 – 16).

The Okanagan Valley provides habitat for many species that are nationally ranked by COSEWIC²³ as endangered (E), threatened (T) or of special concern (C), or are provincially ranked as red-listed or blue-listed²⁴. The Species at Risk Act²⁵ provides protection for species ranked as threatened or endangered that occurring on Federal land. See Appendix C for a list of wildlife species with the potential to occur in the study area.

declining numbers.

²² Adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

²³ **COSEWIC**, the Committee on the Status of Endangered Wildlife in Canada, determines the national status of wild Canadian species, subspecies and separate populations suspected of being at risk. Endangered (E) denotes a species facing imminent extirpation or extinction. Threatened (T) denotes a species likely to become endangered if limiting factors are not reversed. (SC) denotes a species of special concern because of characteristics that make it particularly sensitive to human activities or natural events.

²⁴ **Red-list**: The list of British Columbia's flora, fauna, and plant communities that are rare and endangered. **Blue-list**: The list of British Columbia's flora, fauna and plant communities that are at risk because of low or

²⁵ Government of Canada 2003.

Some **red-listed** vertebrate animals in the study area include²⁶:

Badger (COSEWIC-E) (*Taxidea taxus* ssp. *jeffersonii*) Swainson's Hawk (*Buteo swainsoni*) Yellow-breasted Chat (COSEWIC-E) (*Icteria virens*) Grasshopper Sparrow (*Ammodramus savannarum*)

Some *blue-listed* animals in the study area include:

Spotted Bat (COSEWIC-SC) (Euderma maculatum)
White-throated Swift (Aeronautes saxatalis)
Gopher Snake (COSEWIC-T) (Pituophis catenifer ssp. deserticola)
Racer (COSEWIC-SC) (Coluber constrictor)
Western Rattlesnake (COSEWIC-T) (Crotalus oreganus)
Painted Turtle (Chrysemis picta)
Great Basin Spadefoot (COSEWIC-T) (Spea intermontana)

Conservation Data Centre

web site: http://srmwww.gov.bc.ca/cdc/

Check this web site for the current provincial conservation status of rare plants, animals, and natural plant communities, since the status of these changes over time.

COSEWIC

web site: http://www.cosewic.gc.ca/

Check this web site for the current national status of rare plants and animals.

- Fragility is a measure of an ecosystem's sensitivity to a range of disturbance factors that can cause decline or loss of ecosystem health or integrity. Disturbances include direct physical impacts, introduction of invasive species, and fragmentation. Many of the SEI ecosystem types are fragile because they are vulnerable to invasion by invasive plants, they have erodable soils, and they depend on complex ecological processes that are easily disrupted.
- ◆ High biodiversity is a common feature of most SEI ecosystems, largely because of the proximity of the Okanagan Valley to grasslands and deserts to the south, and because of the close proximity of many different types of ecosystems in the landscape. This creates an ensemble of species at risk not found elsewhere in Canada.
- Specialised habitats occur throughout the SEI ecosystems. They support many species of plants and animals. Typically, these ecosystems are critical habitats for rare, threatened or endangered species or natural plant communities. Some of these occur in only a few places in British Columbia or Canada, and their loss in the Okanagan would result in the loss of biodiversity and species at risk.

²⁶ See Appendix D for a full list of known and potential threatened and endangered vertebrates in the study area.

Socio-economic Values

- Ecosystem Services including air and water filtration and purification, nutrient cycling, and crop pollination. Clean water, water retention, and groundwater infiltration are important values provided by natural areas.
- Natural areas networks comprised of diverse ecosystems and species of the area will provide for human enjoyment and interaction with wildlife amidst development. The area provides an attractive and aesthetic backdrop for the City.
- ◆ High scenic values are provided by rock outcrops, grasslands, and cliffs that provide excellent views of the landscape. These areas are often targeted for recreational and residential development. The community's natural landscape attracts visitors and new residents, and contributes towards opportunities for nature-based tourism and the unique 'sense of place', and is a source of pride and pleasure for local residents.
- ♦ Outdoor recreation opportunities are provided by ecosystems in public parks, and on accessible crown land where low-impact activities will not damage the habitat. Wildlife viewing is very important to Canadians²⁷, and contributes to our quality of life. Bird watching is among the fastest growing leisure pursuits. Hunting, fishing, trapping and guide outfitting contribute to the economy and can occur where wildlife populations can sustain them.
- Research and nature education are important at all levels from early childhood through to university, plus continuing education programs. Many schools are now working with local groups (e.g., Streamkeepers and Wetlandkeepers); most focus on creating native plant communities and restoring wildlife habitat. The Allan Brooks Nature Centre provides opportunities for local and regional community ecosystem conservation efforts through displays, educational programs, hands-on workshops, and conservation-based volunteer activities.
- ◆ Nature based tourism is growing in economic importance, and can be very important in rural communities. Economic spin-offs can include benefits to local commercial services such as overnight accommodation, food concessions, and ventures such as guided nature trips and bird watching. Annual events such as the Meadowlark Festival in the South Okanagan make significant contributions to the local economy as they attract visitors from well beyond the host community.
- Natural resource use such as grazing and selection harvesting of forests have supported generations of Okanagan residents and continue to be important activities in the study area. The study area is also a source of many plants traditionally used by First Nations including food plants such as balsamroot and mariposa lily.
- Increased property value is provided by natural areas. The beauty of the natural landscape is often a large part of what attracts people to the North Okanagan. Studies show that undeveloped natural areas measurably increases the value of nearby property² by 5 to 32%² and thus, contributes far more in property taxes than it costs in services³.

-

²⁷ Environment Canada 1999

²⁸ Meadows 1999

²⁹ U.S. National Parks Service 1990

³⁰ Fodor 1999

3 Impacts of Concern³¹

The Vernon Commonage is one of the few remaining areas in the North Okanagan with relatively intact natural ecosystems that are minimally fragmented. Human settlement pressures represent the greatest threat to sensitive ecosystems in the study area. Large-scale landscape concerns, which affect all ecosystems, include landscape fragmentation, disruption of natural disturbance regimes, edge effects, and invasive species introductions.

3.1 Landscape fragmentation

Fragmentation of the landscape often affects the functioning of ecosystems by disrupting connections between different ecosystems (e.g., between uplands and wetlands, resulting in changing water movement and water table levels). Fragmented ecosystems also are more susceptible to a variety of impacts, such as invasion by non-native species and increased access and inappropriate activities by people. In addition, disconnected islands of natural ecosystems often cannot provide the necessary habitat values for wildlife species, which may require a number of different ecosystems for breeding, wintering, and foraging. A network of corridors that connect habitats will help to maintain habitat access, gene dispersal, and the potential for distribution of wildlife species.

Although the Vernon Commonage is minimally fragmented, urban and agricultural developments are scattered through the area and have affected the edges and surroundings.

3.2 Disruption of Natural Disturbance Regime

The exclusion and suppression of natural fire has changed grassland and forest ecosystems in the study area. Ecosystems and species of the Okanagan Valley have evolved with natural fire as a major factor in ecosystem and habitat distribution. Frequent **surface fires**³² maintained open forests with largely grassy and shrubby understories. Fire exclusion has resulted in dense forests ingrown with Douglas-fir and ponderosa pine, and encroachment of these trees onto grasslands. Fire exclusion has affected both ecosystem processes and wildlife habitat values.

Field observations indicate that the mostly forested western slopes of the Commonage were likely a combination of grasslands and very open forests historically. Although these slopes are west-facing, there is little wind-deposited (aeolian) material on the soil surface. This wind-deposited material is comprised of sands and silts with no rocks. Compared to trees, native bunchgrasses are better able to capture the surface moisture in aeolian materials. The lack of aeolian material may have allowed trees to establish more readily once fires began to be excluded with European settlement in the late 1800's. Conversely, the eastern slopes have both more extensive grasslands and aeolian materials and seem less prone to tree encroachment, although encroachment is occurring there as well.

Sensitive Ecosystems Inventory: Vernon Commonage, 2005

³¹ Adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

³² Surface fires are fires that burn primarily through the understory or grass and herbaceous vegetation in an ecosystem and do not burn in the overstory trees. This is in contrast to the fires of 2003 which were able to burn through the forest canopy because forests are now more closed than they were historically.

3.3 Invasive Species

Both the deliberate and accidental introduction of invasive non-native plant species (see below) has significantly altered the species composition of some ecosystems in the study area. Many grasslands have been altered by invasive plants. Some invasive animal species such as European starlings have altered wildlife populations by displacing native cavity nesting birds.

Invasive plant species reduce diversity by displacing native plant species, and by reducing vegetation diversity and soil stabilization. Invasion of non-native plants usually results in a loss of forage for domestic livestock and wildlife. Recreation vehicles such as all terrain vehicles (ATVs), bicycles, animals, and people can all spread invasive plants. Many invasive plants have seeds that can survive in the soil for decades; consequently, invasive plant control must always be considered to be a long-term process.

For this SEI, we define **invasive plant species** as non-native plants which, in the area they occur, lack the natural enemies necessary to restrict their distribution.

Noxious weeds are aggressive invasive plants that are designated under the provincial Weed Control Act.

Grasslands, old forests, coniferous woodlands, and sparsely vegetated ecosystems are vulnerable to invasion by cheatgrass (*Bromus tectorum*) and other annual bromes (*Bromus* spp.), diffuse knapweed (*Centaurea diffusa*), and sulphur cinquefoil (*Potentilla recta*). Disturbed grasslands are very vulnerable to takeover by invasive plant species if they are disturbed further. Riparian ecosystems and broadleaf woodlands are vulnerable to invasion by common hound's-tongue (*Cynoglossum officinale*) and common burdock (*Arctium minus*). Wetland ecosystems can be completely altered if purple loosestrife (*Lythrum salicaria*) becomes established (it was not observed in the study area but is known from around Kelowna).

Some invasive plant species:

Diffuse knapweed (Centaurea diffusa)
Sulphur cinquefoil (Potentilla recta)
Cheatgrass (Bromus tectorum) and other annual bromes (Bromus spp.)
Dalmation toadflax (Linaria genistifolia)
Common hound's-tongue (Cynoglossum officinale)
Purple loosestrife (Lythrum salicaria)

Figure 3. Cheatgrass (left) and knapweed plant in its first year (right).

3.4 Edge effects

Fragmentation of ecosystems combined with adjacent development contributes to the creation of 'edges' where there is an abrupt rather than natural, gradual change from one ecosystem type to another. This edge effect can alter the habitat value of the original ecosystem by creating changes in microclimate elements such as air temperature, light level, and humidity³³. Direct biological effects result when specific species cannot tolerate human activity nearby, or they are exposed to predation by other species including domestic pets. Increased non-native species invasion and competition for habitat are examples of indirect biological edge effects.

The study area is influenced by edge effects in developed areas such as Predator Ridge, rural roads, and adjacent to the urbanized portion of the City of Vernon. The scattered agricultural fields in the study area provide a much softer edge than urban development. These agricultural areas still provide some habitat values, including places for wildlife to traverse to other habitats. Additional urban growth, roads, and other land development within the study area have the potential to increase edge effects.

3.5 Direct Impacts

Direct impacts to ecosystems are those which occur on site, and which have the most immediate and visible effect. Vegetation removal or damage and soil removal or compaction are examples of immediate and visible effects. Ditching, diking, draining and filling of wetlands and riparian areas are visible effects which also result in long-term indirect effects on water movement and water levels. Disturbances to wildlife species, particularly during the breeding season can directly impact their survival. Although it may seem like large rural lots have the potential to retain many natural values, many owners choose to remove native vegetation and natural features, and intensely graze domestic animals (e.g., horses). Degradation and fragmentation of these areas also leaves them

³³ Chen et al. 1995; Saunders et al. 1991

more vulnerable to weed invasion. All of these possible changes reduce the ecological integrity and natural values of these areas.

3.6 Indirect Impacts

Activities that occur adjacent to or at some distance from the ecosystem result in indirect impacts. Hydrological³⁴ changes due to roads, buildings, irrigation³⁵, deforestation, removal of vegetation, invasive plant species, increased impervious road surfaces, soil compaction and agricultural practices can all result in reduced groundwater infiltration and summer soil moisture, increased annual runoff, disrupted drainage patterns, and reduced soil moisture holding capacity. These hydrological changes can change the water quality and function, structure, and wildlife habitat values of adjacent wetlands and riparian areas.

Water pollution from both point and non-point sources contributes to reduced water quality, potential outbreaks of water-borne disease, and impacts to wildlife populations through the loss of habitat and disruption of the food chain. The use of pesticides associated with agriculture and landscaping has also caused degradation of natural ecosystems and wildlife habitat³⁶.

The presence of humans and their pets, even on private property can cause disturbances to wildlife. Recreational activities involving all terrain vehicles (ATVs), dirt bikes, off-road vehicles, and mountain bikes, create soil disturbances that allow rapid invasion and spread of invasive plant species. They can also disturb wildlife, and cause soil erosion and damage to plants. Similarly, domestic pets such as cats and dogs may predate or harass wildlife.

-

³⁴ Water-related features and processes.

³⁵ The effluent spray irrigation program is the most extensive disruptive hydrological influence in the study area. In addition to the affects noted above, it also likely increases nutrient levels in water bodies, changes plant composition, promotes algal growth, and reduces oxygen levels.

³⁶ Cannings and Durance 1998

4 Methods and Limitations³⁷

This chapter describes the methods that were used to generate the sensitive ecosystems map. These methods follow those used in the Central Okanagan. The provincially recognised Terrestrial Ecosystem Mapping³⁸ (TEM) approach was used to create a base map. Ecosystems were evaluated for rarity and ecological sensitivity, and a sensitive ecosystems theme map was developed.

4.1 Terrestrial Ecosystem Mapping

Terrestrial Ecosystem Mapping (TEM) formed the foundation of the thematic sensitive ecosystems map that was created for this project. Polygons were drawn on 1:15,000 aerial photographs around areas of uniform vegetation, topography and terrain features. Ecosystem, terrain, and conservation evaluations were recorded in a polygon database. The polygons were digitized and compiled in a geographic information system (GIS), and linked to the polygon database.

Details on methods, results, limitations and management recommendations for Terrestrial Ecosystem Mapping and terrain mapping can be found in **Volume 2**³⁹.

Details on methods, results, limitations and management recommendations for wildlife capability and suitability mapping can be found in **Volume 3**⁴⁰.

4.2 Sensitive Ecosystems Mapping

For the Central Okanagan SEI⁴¹ and Bella Vista SEI⁴², TEM units were evaluated for rarity and ecological sensitivity and were assigned to sensitive ecosystems and other important ecosystems categories accordingly. For this project, TEM units were assigned to the same sensitive ecosystems as in the Central Okanagan and Bella Vista SEIs and any new TEM units were evaluated for rarity and ecological sensitivity.

The criteria used in the Central Okanagan and Bella Vista SEIs for ecological sensitivity included the presence of shallow soils, the susceptibility of the site to hydrological changes, erosion, and presence of invasive plant species, and sensitivity associated with human disturbance. Rarity was based on rankings and proposed rankings by the Conservation Data Centre (CDC), provincial distribution of those ecosystems (especially in an undisturbed state), and the threats to them.

If an ecosystem was determined to be ecologically fragile or rare, it was assigned to the applicable sensitive ecosystems category. In cases where a given ecosystem could be assigned to more than one Sensitive Ecosystems category, it was always assigned to the more sensitive category. For example, old riparian forests were assigned to the 'riparian' rather than the 'old forest' category

³⁷ Adapted from Iverson and Cadrin 2003.

³⁸ Resources Inventory Committee 1998

³⁹ Iverson and Uunila 2005

⁴⁰ Haney and Sarell 2005

⁴¹ Iverson and Cadrin 2003

⁴² Iverson 2003

and old coniferous woodlands were assigned to the 'old forest' category rather than the 'coniferous woodland' category.

Ecosystems were grouped into sensitive ecosystems categories using the Ecosystem-based Resource Mapping (ERM) Ratings Table Tool⁴³. This tool allows SEI categories to be assigned to each ecosystem. Detailed conversion tables can be found in Appendix B.

Each polygon can have up to three ecosystem components mapped in it. The three components are ordered by area of occupancy from largest to smallest. The final Sensitive Ecosystems map shows the first component of the polygon in a colour specific to that Sensitive or Other Important Ecosystem type (see Figure 5 in Section 5 Inventory Results). The presence of a second or third component is indicated by cross-hatching but does not specifically indicate which Sensitive or Other Important Ecosystem is present.

Field Sampling and Conservation Evaluation of Sensitive Ecosystems

Prior to fieldwork, landowners within the study were contacted by letter and phone (and sometimes in person) to request permission to sample their lands. Numerous landowners agreed to have their lands sampled, although several large landowners did not grant access.

I developed a sampling plan using forest cover maps to identify areas of potentially old forest, and used aerial photographs to identify accessible potentially sensitive ecosystems including grasslands, wetlands, ponds, aspen copses, riparian areas, rock outcrops, and talus slopes. Field sampling was completed in the summer of 2005, and a total of 128 sensitive ecosystems or other important ecosystems sites were field-checked (Table 3). A team of three scientists including a plant ecologist, terrain specialist, and wildlife biologist conducted the sampling.

Three types of sample plots were used to identify and assess ecosystems: detailed ecological plots, ground inspections, and visual inspections⁴⁴. Sample plots were subjectively located within polygons to best represent the ecosystem(s) in that polygon. Samples sites were distributed to maximize sampling of sensitive ecosystems; other ecosystems were sampled along access routes to sensitive ecosystems. Sampling of private lands we did not have permission to access was limited to visual inspections with binoculars from accessible locations on adjacent properties. Sampling procedures for detailed ecological plots and ground inspections are outlined in *Field Manual for Describing Terrestrial Ecosystems*⁴⁵. The *Standard for Terrestrial Ecosystem Mapping*⁴⁶ in British Columbia provides guidelines for visual inspection data collection. We also assessed the conservation values of each site.

-

⁴³ See http://srmwww.gov.bc.ca/wildlife/whr/sta.html for more information on the ERM tools.

⁴⁴ See Volume 2: Iverson and Uunila 2005

⁴⁵ BC Ministry of Environment, Lands and Parks and BC Ministry of Forests 1998

⁴⁶ Resources Inventory Committee 1998

Table 3. Number of sites field sampled by ecosystem type.

	Full plots	Ground	Visuals	Total
Sensitive Ecosystems		Inspections		Plots
Broadleaf Woodland		8	5	13
Grasslands	3	13	12	28
Old Forest				0
Riparian	1	4	2	7
Sparsely Vegetated		14	16	30
Coniferous Woodland	4	12	7	23
Wetland		3	10	13
TOTAL	8	54	52	114
Other Important Ecosystems				
Disturbed Grasslands		1	8	9
Mature Forest		3	2	5
TOTAL		4	10	14

4.3 Mapping Limitations

The SEI information is intended to provide a broad planning base and to alert local and regional decision-makers, landowners, and development or planning consultants of the presence of important ecosystems and ecological features.

The SEI mapping does not replace the need for on-site assessments of areas where land use changes are proposed or contemplated.

The accuracy of polygon boundaries is limited by the scale (1:15,000) and date (1994) of the aerial photographs on which the sites are delineated.

It is recommended that digital data not be enlarged beyond the scale of the photos as this may result in unacceptable distortion and faulty registration with other data sets.

On-going land uses may have changed some polygons after the date that the aerial photographs were taken or the field sampling was conducted. Wherever possible, polygons reflect conditions that were noted during field sampling and on orthophotos from 2003, rather than when the aerial photographs were taken.

One of the primary limitations of aerial photograph interpretations is the ability to see disturbances such as cover of invasive plants. I applied information from field sampling data to adjacent areas. Disturbance levels may have changed in some areas after the field sampling was completed.

Often small sensitive ecosystems are captured as a small component of a larger polygon that is dominated by one or two other ecosystems. Many polygons contain a complex of up to three ecosystems, and sensitive ecosystems may only occupy a portion of a given polygon. While polygon delineation is much more detailed than in many 1:15,000 ecosystem mapping projects, the landscape is complex, resulting in many complex polygons.

5 Inventory Results

This chapter provides a summary of the distribution and extent of sensitive ecosystems and other important ecosystems in the study area. Further details can be found in each of the ecosystem chapters.

SEI Summary Results

Seven types of sensitive ecosystems and two types of other important ecosystems were identified. Collectively the seven sensitive ecosystems (SE) covered 31.1% (2090 ha) of the study area (Table 4), while modified landscapes covered the remaining 68.9%. The two other important ecosystems (OIE) mapped covered 14.0% (944 ha) of the study area. Figure 5 shows the distribution of sensitive ecosystems in the study area. Each polygon can have up to three ecosystem components mapped in it. The three components are ordered by area of occupancy from largest to smallest.

Table 5 shows the distribution of different ecological communities in the study area. The ecological communities are those that were mapped in the detailed Terrestrial Ecosystem Mapping (TEM) that the Sensitive Ecosystem Inventory is derived from. Table 5 also shows the provincial conservation status of mapped ecological communities, the Sensitive or Other Important Ecosystem unit(s) that they fall into, and the area (ha) and percentage of the study area that they occupy. Some ecological communities may fall into more than one Sensitive or Other Important Ecosystem (SE or OIE) category where they have different ecological conditions or different site sensitivities. Some red-listed and blue-listed ecosystems may fall partially into the 'Not Sensitive' category because they have been altered and are poor condition examples of the ecological community.

Ecosystems that have not been included as sensitive ecosystems or other important ecosystems still have many important values, especially to provide connectivity and buffers between and around SE and OIEs. Some ecosystems such as younger forests may be recruitment sites for future SEs or OIEs. Many non-sensitive ecosystems provide important wildlife habitat. Also, the vegetation and soils help provide the safe capture, storage, and release of water that is critical to maintaining water quality, preventing soil erosion, and maintaining the hydrological function of wetland, riparian and other ecosystems.

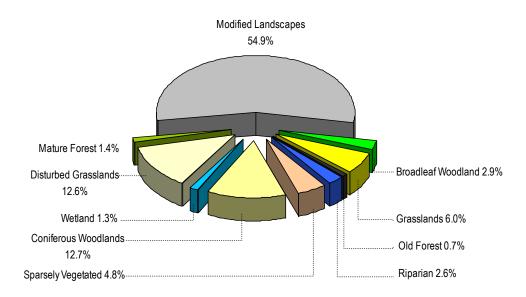


Figure 4. Relative proportion of sensitive ecosystems, other important ecosystems, and modified landscapes in the study area.

Table 4. Area of sensitive ecosystems and other important ecosystems in the study area.

	Area (ha)	Percent of Study Area
Sensitive Ecosystems (SE)		_
Broadleaf Woodland	195	2.9%
Grassland	403	6.0%
Old Forest	49	0.7%
Riparian	178	2.6%
Sparsely Vegetated	323	4.8%
Coniferous Woodland	857	12.7%
Wetland	85	1.3%
Total SE	2090	31.1%
Other Important Ecosystems (OIE)		
Disturbed Grassland	850	12.6%
Mature Forest	94	1.4%
Total OIE	944	14.0%
TOTAL SE and OIE	3034	45.1%

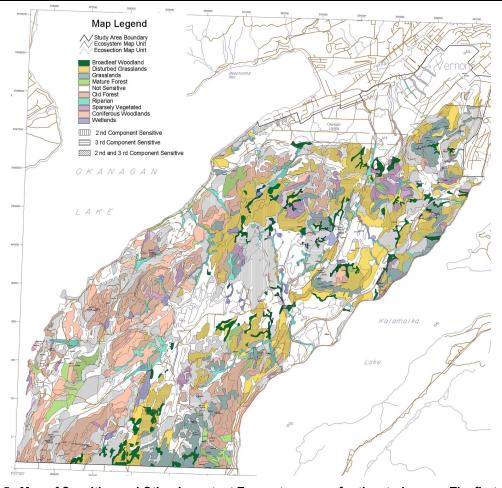


Figure 5. Map of Sensitive and Other Important Ecosystems map for the study area. The first component of each polygon is shown in colour and the presence of other sensitive components is shown with cross hatching but does not specifically indicate which Sensitive or Other Important Ecosystem is present.

Table 5. The distribution of different ecosystem units in the study area, their provincial conservation status, the Sensitive or Other Important Ecosystem unit(s) that they fall into, and the area (ha) and percentage of the study area that they occupy. Some ecological communities may fall into more than one Sensitive or Other Important Ecosystem category where they have different ecological conditions or different site sensitivities. Some red-listed and blue-listed ecosystems may fall partially into the 'Not Sensitive' category because they have been altered and are poor condition examples of the ecological community.

Map Code	Ecological Community Name	Provincial Conservation Status	Sensitive or Other Important Ecosystem	Area (ha)	% of study area
AS	Trembling aspen – Snowberry – Kentucky	Red-listed ⁴⁷	Broadleaf Woodland	195	2.9
	bluegrass		Riparian	26	0.4
CD	Black cottonwood / Douglas-fir –Common Snowberry – Red-osier Dogwood	Red-listed	Riparian	7	0.1
DS	Douglas-fir / Ponderosa pine – Snowberry –	Red-listed	Mature Forest	20	0.3
	Spirea		Riparian	20	0.3
			Not Sensitive	391	5.8
FW	Idaho fescue – Bluebunch wheatgrass	Red-listed	Grassland	149	2.2
			Disturbed Grassland	568	8.4
			Not Sensitive	571	8.5
PB	Douglas-fir / Ponderosa pine – Bluebunch	Red-listed	Coniferous Woodland	494	7.3
	wheatgrass – Balsamroot		Old Forest	27	0.4
RF	Prairie Rose – Idaho fescue	Red-listed	Grassland	70	1.0
SD	Hybrid white spruce / Douglas-fir – Douglas maple – Dogwood	Red-listed	Riparian	124	1.8
WB	Bluebunch wheatgrass – Balsamroot	Red-listed	Grassland	282	4.2
			Disturbed Grassland	184	2.7
			Not Sensitive	98	1.5
BR	Baltic Rush Marsh-Meadow	Blue-listed ⁴⁸	Wetland	16	0.2
DP	Douglas-fir / Ponderosa pine – Pinegrass	Blue-listed	Mature Forest	5	0.1
			Not Sensitive	366	5.4
DW	Douglas-fir / Ponderosa pine – Bluebunch	Blue-listed	Coniferous Woodland	336	5.0
	wheatgrass – Pinegrass		Old Forest	7	0.1
			Not Sensitive	63	1.0
SP	Douglas-fir / Ponderosa pine – Snowbrush –	Blue-listed	Mature Forest	69	1.0
	Pinegrass		Not Sensitive	386	5.7
BM	Bulrush Marsh		Wetland ⁴⁹	8	0.1
CS	Common Spikerush Marsh		Wetland	0.4	0.005
CT	Cattail Marsh		Wetland	1	0.008
OW	Shallow Open Water		Wetland	36	0.5
PD	Pond		Wetland	24	0.4
CW	Choke cherry – Bluebunch wheatgrass rocky bluff	not ranked; recommended for listing	Sparsely Vegetated	35	0.5
FO	Douglas-fir / Ponderosa pine –	not ranked;	Coniferous Woodland	27	0.4
	Saskatoon – Mock orange	recommended for listing	Old Forest	4	0.06
SA	Antelope brush – Selaginella ⁵⁰	not ranked;	Sparsely Vegetated	78	1.2
		recommended for listing	Old Forest	7	0.1
SB	Selaginella – Bluebunch wheatgrass	not ranked;	Sparsely Vegetated	173	2.6
	rock outcrop	recommended for listing	Not Sensitive	46	0.7
SO	Saskatoon – Mock orange Talus	not ranked;	Sparsely Vegetated	29	0.4
		recommended for listing	Old Forest	4	0.06
CL	Cliff		Sparsely Vegetated	8	0.1
BN	Kentucky bluegrass – Stiff needlegrass		Not Sensitive	39	0.6
CB	Cutbank		Not Sensitive	11	0.2
CF	Cultivated Field		Not Sensitive	1160	17
ES	Exposed Soil		Not Sensitive	47	0.7

⁴⁷ Ecological communities that are rare and endangered.

⁴⁸ Ecological communities that are at risk because of low or declining numbers.

⁴⁹ All wetland plant communities are locally rare in this climate although these plant communities may be common in other parts of the province.

⁵⁰ Although the plant association name includes antelope brush, this plant does not occur in the study area.

Мар	Ecological Community Name	Provincial Conservation	Sensitive or Other	Area	% of
Code		Status	Important Ecosystem	(ha)	study
					area
GC	Golf Course		Not Sensitive	64	1.0
GP	Gravel Pit		Not Sensitive	8	0.1
RE	Reservoir		Not Sensitive	63	0.9
RN	Railway		Not Sensitive	1	0.02
RW	Rural		Not Sensitive	224	3.3
RZ	Road Surface		Not Sensitive	128	1.9
UR	Urban/Suburban		Not Sensitive	26	0.4
		_	TOTAL	6728	100

6 Conservation Analysis

The first stage in developing a Local Ecosystems Plan (see Section 7) is the systematic prioritization of ecosystems for protection. This can provide a basis for a strategy for parks designation and acquisition, other forms of protection, and sensitive development. This can be accomplished using the base mapping used to develop the Sensitive Ecosystems Inventory. This conservation analysis is intended to provide the prioritization of ecosystems. It follows methods developed for the conservation analysis in 'Balanced Growth for the Bella Vista – Goose Lake Range' (Clarke et al. 2004).

The primary goals of the conservation analysis are to identify areas within the study area that, if retained as intact ecosystems and properly managed, will:

- conserve representative high quality examples of all sensitive and important ecosystems;
- ensure the long-term existence of significant wildlife habitat and all native plant and wildlife species in the study area, especially rare and endangered species;
- maintain ecological linkages within the study area and to adjacent areas; and
- maintain all ecological functions and wildlife habitat needs within these areas.

To achieve these objectives, we used a broad scale planning approach based on GIS data from the Sensitive Ecosystems Inventory, Terrestrial Ecosystem Mapping⁵¹, and Wildlife Habitat Mapping⁵².

⁵¹ Iverson and Uunila 2005

⁵² Haney and Sarell 2005

6.1 Conservation analysis methods⁵³

Three stages were used to identify priority areas for conservation.

Stage 1: Cumulate Conservation Values

- 1. A rating scheme based on rarity, quality and condition of ecosystems, was developed to prioritize sensitive ecosystems mapped in the Vernon Commonage.
 - a. The relative value of sensitive and other important ecosystems in the study area was ranked in order of importance from 0 (minimal importance) to 10 (highest importance), and the results shown below (Table 6).⁵⁴

Table 6. Relative ecosystem values for sensitive ecosystems.

SEI category	SEI subcategory	Relative Ecosystem Value	Rationale (% of study area)
Broadleaf Woodland	Aspen Copse	6	Sensitive & rare within the study area (3%)
Disturbed Grassland		6	Disturbed but provide values for many grassland species including many rare and endangered species (13%)
Grassland	Grassland	9	Very Sensitive & provincially rare; moderately distributed in the study area (5%)
	Shrubland	9	Very Sensitive & provincially rare; very rare in the study area (1%)
Mature Forest	Coniferous	2	Rare, but less sensitive (1%)
	Mixed	2	Rare, but less sensitive (0.01%)
Not a Sensitive or Other Important Ecosystem		0	Not sensitive (55%)
Old Forest	Coniferous	10	Very sensitive, very important wildlife habitat, very rare (0.7%)
Riparian	Fluvial Fringe	10	Very sensitive, very important wildlife habitat, very rare (0.8%)
	Gully	10	Very sensitive, very important wildlife habitat, rare (2%)
Sparsely Vegetated	Cliff	10	Sensitive, very important wildlife habitat, very rare (0.1%)
	Rock	8	Sensitive, very important wildlife habitat, uncommon (3%)
	Shrub	8	Sensitive, very important wildlife habitat, uncommon (2%)
	Talus	10	Sensitive, important wildlife habitat, rare (0.4%)
Woodland	Coniferous	6	Sensitive, very important wildlife habitat, common (13%)
Wetland	Marsh	10	Very sensitive, very important wildlife habitat, very rare (0.4%)
	Shallow Water	10	Very sensitive, very important wildlife habitat, very rare (1%)

b. Each sensitive- or other important ecosystem was rated as to the quality and condition of the ecosystem in the original mapping. Values were assigned to these ratings from 0 (lowest value) to 1 (highest value) as shown below in Table 7.

⁵³ This section and these methods are adapted from Clarke et al. 2004

⁵⁴ Values are not intended to be absolute, instead only the relative ranking of ecosystems is important.

Table 7. Values assigned to each quality and condition rating.

Quality and Condition Rating	Assigned Value (from 0 to 1)
Excellent	1
Good	0.8
Marginal	0.5
Poor	0.1

- c. The SEI and quality-condition values were multiplied together for each component of a polygon, to produce the combined ecosystem values.
- 2. Wildlife habitat values were examined for the most important life requisites of 10 of the 11⁵⁵ selected species whose habitats were mapped (Table 8). All ecosystems, including sensitive and non-sensitive ecosystems were rated for current habitat suitability for various life requisites for each of these 10 species. Each component of a polygon with a high rating for any of the life requisites was assigned a value of 10, each component with a moderate rating was assigned a value of 6, and each component with a low suitability rating was assigned a value of 1. All of the values for each component of each polygon were averaged. The final value used for the polygon was the component with the highest value.

Table 8. Species and life requisites used to assign wildlife values to polygons.

Species	Map Theme (Life requisite)
Great Basin Spadefoot	Breeding
Western Rattlesnake	Basking/denning
Gopher Snake	Egg-laying
Swainson's Hawk	Nesting
Long-billed Curlew	Nesting
Western Screech-owl	Nesting
Yellow-breasted chat	General living (nesting and foraging)
Grasshopper Sparrow	General living (nesting and foraging)
Spotted Bat	Breeding/roosting
Badger	General living (denning and foraging)

3. For each polygon component, sensitive ecosystem and wildlife habitat values were combined into a single value giving a two to one weighting of ecosystems to wildlife (2 x ecosystem value + wildlife value). Ecosystems were weighted more heavily as they also represent values for a much broader range of species whose habitat was not mapped ⁵⁶. The final value used for the polygon was the component with the highest value.

The resulting map of combined and weighted SEI / habitat ratings is shown as the 'Conservation Rating Map' (Figure 6).

⁵⁵ Painted Turtle was excluded because of the habitat overlap with Great Basin Spadefoot.

⁵⁶ There is no guidance in scientific literature to guide the appropriate weighting of ecosystem and wildlife habitat values. We found that there was considerable overlap between conservation priorities for ecosystems and wildlife, thus maps produced with different weighting would be very similar.

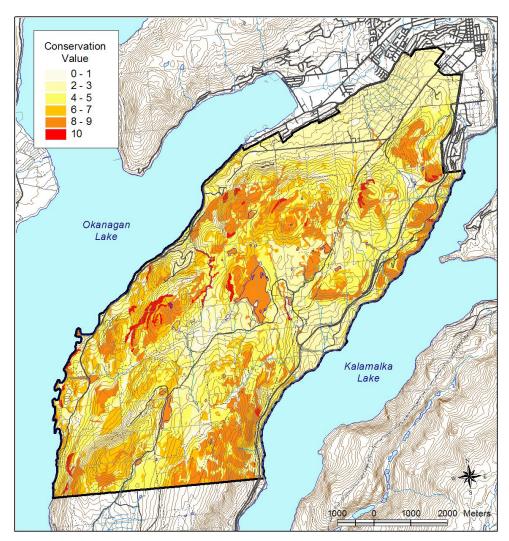


Figure 6. Conservation rating map. Higher conservation values are shown in darker colours.

Stage 2: Identify Priority Conservation Areas

Using the conservation rating map, conservation areas including core areas, buffers, wildlife corridors, and other important conservation areas were identified based on size, concentration and connectivity of high value areas (see Figure 7). The figure illustrates priorities for conservation, and could be used to develop a vision for a system of protected areas and resource lands connected across the landscape.

1. Core Conservation Areas

Areas with a large concentration of high and some moderate conservation values were identified as core conservation areas. These would be the areas of highest priority for conservation. Ideally, activities would be primarily directed towards maintaining ecological and wildlife habitat values in these areas. There may be small areas within the core areas that could be accessed and developed without compromising core values (e.g., by fragmentation); further larger scale mapping and wildlife inventory would be needed to identify these areas. Core areas are high priorities for

acquisition by land trusts, conservation organizations, for Regional Parks, and should be zoned for environmental purposes.

2. Buffers

Core conservation areas need to be buffered from potential adverse effects of adjacent land uses. One hundred meter buffers around core areas were identified to conserve values in core conservation zones, and need to be managed for that purpose. The width and design of buffers also needs to be refined at larger scales to reflect the size of patches, ecosystem types, local landscape features and wildlife habitat values. Wetland and riparian buffers will likely need to be wider⁵⁷, but it is possible that buffers around some upland ecosystems may be narrower.

3. Wildlife Corridors

Wildlife corridors provide animals with an opportunity to move freely between two or more habitat patches or habitat types in an otherwise fragmented landscape. This movement is essential to provide genetic links between populations and prevent inbreeding, and to compensate for temporary population declines in one of the habitat patches. The habitat needs of all priority species should be incorporated into the design of the corridor. Corridors must be suitably wide, with appropriate habitat features to provide security cover during movement. Corridors usually consist of linear habitats such as gully or streamside riparian areas; they are often composed of two or more ecosystem types to provide complexity to the corridor. Development and roads should avoid these zones, and mitigation will be required where roads and other developments transect the corridor. Wildlife corridors were identified to connect core areas to each other and to outside the study area, including connections to Okanagan Lake and Kalamalka Lake.

In some cases, corridors have already been fragmented by roads and connections need to be restored. In particular, it will be challenging to restore connections across Highway 97.

Corridors, where possible, include riparian draws with adjacent warm aspect grasslands, and ridges. These habitat features are those most commonly used for travel between habitats. Larger scale mapping and additional wildlife inventory might identify some small areas that could be

From: Semlitsch, R. and J. Bodie. 2003. Biological Criteria for Buffer Zones around Wetlands and Riparian Habitats for Amphibians and Reptiles. Cons. Biol. 17(5):1219-1228.

⁵⁷ "It is generally acknowledged that terrestrial buffers or riparian strips (30 to 60 meters) wide will effectively protect water resources. However, terrestrial habitats surrounding wetlands are important to more than just the protection of water resources. They are also essential to the conservation and management of semi-aquatic species... Our data clearly indicates that buffers of 15-30 meters, used to protect wetland species in many states, are inadequate for amphibians and reptiles. We propose...three terrestrial zones of protection... an aquatic buffer 30-60 meters; a core habitat (which includes the aquatic buffer): 142 to 289 meters; and an additional terrestrial buffer of 50 meters"

[&]quot;We propose...three terrestrial zones adjacent to core aquatic and wetland habitats (1) a first terrestrial zone immediately adjacent to the aquatic habitat, which is restricted from use and designed to buffer the core aquatic habitat and protect water resources (30 to 60 meters); (2) starting again from the wetland edge and overlapping with the first zone, a second terrestrial zone that encompasses the core terrestrial habitat defined by semi-aquatic focal-group use (e.g., amphibians 159 – 290m); and (3) a third zone, outside the second zone, that serves to buffer the core terrestrial habitat from edge effects from surrounding land use (e.g. 50 meters)"

developed without compromising connectivity and other corridor values. This would depend upon the type and configuration of development, and site-specific issues.

4. Other Important Conservation Areas

Areas with a concentration of moderate conservation values were identified as other important conservation areas. Activities would be directed towards maintaining ecological and wildlife habitat values. There would be areas within that could be accessed and developed without compromising some ecological values; further larger scale mapping and wildlife inventory would be needed to identify these areas.

Stage 3: Refine Conservation Priorities

The conservation area design identified in Stage 2 was compared to the SEI map and each wildlife habitat map to ensure all high priority values were included in the appropriate zone. This ensured that core areas included old forests and wetlands, and that there was diversity within each core area.

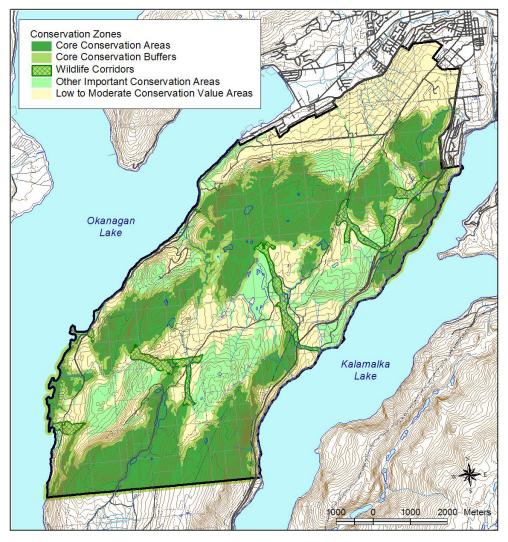


Figure 7. Conservation zones.

6.2 Management of Conservation Zones

Management of Core Conservation Areas (CCA)

Where CCAs occur in areas of rural land use, some managed resource uses (e.g., grazing and selection harvesting of ingrown coniferous forests) may be compatible with conservation values. Landowner contact programs, stewardship agreements, and other forms of stewardship activities could help landowners understand and care for biodiversity values on their property.

CCAs that are situated on properties subject to urban development should be a priority for protection. Core areas are recommended as a focus for conservation/parkland acquisition and should receive more detailed analysis to determine appropriate park boundaries, and to determine other potential means of land acquisition and other conservation options such as conservation covenants. Development Permit Areas (DPAs) can provide for protection of some of the features in and adjacent to these areas. Golf courses are not compatible with the objectives of CCAs, but depending on site conditions, may be compatible with buffer areas or wildlife corridors.

Classification of parks and conservation features should be determined and applied consistently throughout the region. The approved park classification system should be used in the Neighbourhood Planning process to avoid confusion regarding the purpose of natural areas.

Park planning should use zoning to identify areas and apply management objectives for conservation and recreational values.

Management of Buffers

Buffer widths and designs should be refined to better reflect the specific ecosystem and wildlife habitat values in the CCA that they surround. Higher quality and more sensitive ecosystems, important wildlife habitats, and more natural areas are higher priorities for inclusions in buffers. Where wetlands occur near the edge of a CCA, they will require significantly wider buffers and buffers should be designed to provide Painted Turtles and Spadefoots sufficient unrestricted access to other habitats they require. Other more sensitive areas may also require wider buffers, but, conversely, less sensitive edges of the CCA may have narrower buffers. The City and Regional District should implement minimum setbacks from wetlands and watercourses.

Management of Corridors

Corridors for wildlife need to be established to provide secure movement opportunities between core conservation areas. Widths of 100 to several hundred metres are typically required. Recreational use is usually incompatible with maintaining effective corridors. The integrity of the ecosystem(s) within the corridor needs to be maintained, and often managed (and restored in some cases). Barriers may be required to keep domestic animals and unsuitable recreation activities out of the corridors, and keep potentially problem wildlife out of developed areas. Roads should avoid corridors but where this is not possible, should use underpasses or other techniques to eliminate traffic hazards to wildlife.

Management of Other Important Conservation Areas (OICA)

Some managed resource uses (e.g., grazing and selection harvesting of ingrown coniferous forests) are likely compatible with conservation values in OICA. OICAs that are situated on properties subject to urban or other development should be a priority for protection.

7 Planning and Management

7.1 Goals

The goals of the management guidelines differ between sensitive ecosystems and other important ecosystems:

- Sensitive ecosystem guidelines seek to conserve the seven sensitive ecosystems in a relatively natural state.
- Guidelines for other important ecosystems seek to maintain the resource values and minimise the loss of ecosystem functions.

7.2 City and Regional District Planning

Develop a 'Local Ecosystems Plan's

A systematic plan for prioritization and protection, and stewardship of local sensitive and other important ecosystems should be developed. The conservation analysis provides priorities for conservation. The local ecosystems plan should consider known gaps in the system of provincial and regional protected areas, and be integrated across the study area, and within the City of Vernon, Regional District of North Okanagan, and District of Lake Country to ensure landscape level connectivity.

Recognizing and protecting environmentally sensitive areas early in the community planning process provides the best chance of protecting environmental values.

- Design initial road and utility layouts at a landscape scale to minimize impacts to sensitive and other important ecosystems.
- Integrate ecosystem retention and conservation with other land use planning considerations (such as parks and recreation) that are consistent with the preservation of sensitive ecosystems.
- Develop and implement a weed management strategy to minimize the spread and introduction of invasive plant species.
- Develop and implement a fire management plan that identifies forests that are a fire hazard and provides a strategy to reduce this hazard and return forests to historical stand densities.
- Develop a recreation use plan to avoid recreation in critical areas and designate appropriate types of recreation for other areas.

Aside from the ecosystems prioritized for protection in the ecosystem plan, other sensitive and other important ecosystems, and natural areas should be considered in all levels of planning and protection, and mitigation strategies should be developed in areas where development will occur. SEI maps are intended to be used for broad-level planning, however, on-site visits are needed to assess the site and develop site-specific management recommendations.

⁵⁸ Refer to the Conservation Tools Section of Iverson and Cadrin 2003 for more detailed information.

On-site visits are needed to assess and develop site-specific management recommendations for neighbourhood plans and individual developments.

Develop a Conservation Strategy⁵⁹

Most sensitive ecosystems in the Commonage are on private property, so voluntary stewardship by landowners is essential in the long-term. Various tools and mechanisms are available for ecosystem protection depending on the ownership and the management policies and practices of the existing land managers. Once land status is determined, appropriate measures may be taken including:

- Designation as Environmentally Sensitive Areas (ESA) The seven sensitive ecosystems should be a priority in the identification and designation of local government ESAs. In some cases, site boundaries should reflect the dynamic nature of the ecosystem (see Retain Natural Vegetated Buffers around Sensitive Ecosystems below). These ESAs should be identified in the Official Community Plan.
- Acquisition of privately owned lands for conservation and protected status The most undisturbed of these remaining ecosystem fragments should be considered for purchase as conservation areas where only activities that do not impact the ecosystem would be permitted. Grassland, wetland, old forest, riparian and broadleaf woodland together with the highest quality coniferous woodland and sparsely vegetated sites should all be priorities for receiving protected status. Sites where different sensitive ecosystems occur adjacent or in close proximity to one another should also be given priority with regards to protection.
- ◆ Stewardship Private landowners with Sensitive Ecosystems who wish to retain ownership could become involved in voluntary stewardship initiatives such as registering conservation covenants on their property to protect ecosystem values. Protection of grasslands and managing invasive plants should all be priorities for stewardship programs.
- Use other protection techniques such as cluster development, Development Permit Areas, restrictive covenants, purchase of development rights, and incentives to leave sensitive sites intact.

Official Community Plan

See Local Government Act sections 875-884 for more information

The Official Community Plan (OCP) provides overall policy direction for the local government and establishes the basis for its regulations and development approvals. Below, we provide specific recommendations for integrating this SEI into the City of Vernon's and Regional District of North Okanagan's OCPs.

• Designate sensitive and other important ecosystems as **Development Permit Areas** (DPAs) in the OCP. DPA boundaries may go beyond ESA boundaries.

⁵⁹ Significant portions of this section have been adapted from McPhee et al. 2000.

⁶⁰ Development Permits can be used by local governments to establish special requirements for developments including the protection, restoration or enhancement of natural ecosystems and biological

- Ensure that every effort shall be made to maintain or enhance the ecological integrity of these areas.
- Ensure that the vegetation, wildlife, and ecological functions of these areas are maintained or enhanced.
- Ensure that water balance and hydrologic functions are maintained and stormwater planning is integrated with other ecological planning.
- Limit landscaping to restoration of removed or altered native vegetation or habitat.
 Use native plants adapted to on-site conditions. Control invasive plant species.
- Adopt the recommendations for Environmental Impact Assessments in this report.
- Designate sensitive and other important ecosystem DPAs as areas for which **Development** Approval Information is required.
- Use the local ecosystems plan to **determine areas for natural areas** and develop conservation strategies for those areas. Create a natural areas designation for such areas.
- Ensure that **only developments and other activities** compatible with the preservation, protection, restoration, and enhancement of sensitive ecosystems occur in DPAs.
- ◆ Ensure neighbourhood plans are consistent with the local ecosystems plan and conservation strategies. At the development scale, maintain appropriate buffers, determined by qualified professionals, around sensitive ecosystem areas and provide connectivity between sensitive and other important ecosystems.
- Provide for *greater incentives for density bonuses* in developments in exchange for the retention of sensitive ecosystems:
 - Ecosystems identified for conservation in the local ecosystems plan should be the highest priority for retention.
 - Ecosystems must be retained in such a way that natural values are maintained or enhanced.
 - Provide buffers and connectivity to other natural ecosystems within and beyond the development (See Retain Natural Vegetated Buffers Around and Corridors Between Sensitive Ecosystems page 32).
 - Do not limit the maximum density bonus to 20% in cases where density bonuses are granted in exchange for the secured conservation of sensitive ecosystems.
 - Retained natural ecosystems should be covenanted to ensure that future uses are compatible with the protection, restoration, and enhancement of sensitive ecosystems.
- ▶ Eliminate large lot zoning designations in favour of cluster development zones where the net number of housing units remains the same. Reduce minimum lot size to permit cluster development if more than 20% natural area is retained and is not disturbed. Consider the development of cluster housing as a zoning designation.

diversity. Development Permit guidelines can be specified in the OCP or in the zoning bylaw, as provided in Section 919.1(1)(a) of the Local Government Act (Iverson and Cadrin 2003).

- Plan and manage recreational access to minimize impacts to sensitive ecosystems, especially during wildlife breeding and nesting seasons. Uncontrolled motorized recreation is of particular concern.
- Add a goal into the OCP to acquire high priority sensitive ecosystems to add to protected natural areas.
- ◆ Add a goal into the OCP to ensure that *trail and other recreation development* is consistent with broader level conservation priorities and ecological integrity of sensitive ecosystems.
- Policy Section G⁶¹ ensure that subdivision plans along Lake Okanagan and Kalamalka Lake have provisions for maintaining all foreshore vegetation and ecosystems and provide connectivity to upland ecosystems for wildlife.
- ◆ Policy Section K Development Phasing. Revise this section to reflect conservation priorities and conservation plans once they are developed.
 - Avoid approval of any developments in the study area until conservation priorities have been established.
- ◆ Policy Section M Special Areas. Re-designate areas to be consistent with the conservation analysis.

Additional Policies for Wetland and Riparian Ecosystems

- Protect water quality from pollutants, sediments, and changed nutrient loads
- Determine and consider the overall water balance affecting wetland and riparian ecology and protect from disturbance.
 - Maintain natural surface, groundwater and nutrient regimes.

Other Local Government Policies and Plans

Use a Regional Growth Strategy and Parks and Recreation Master Plan to establish community goals and policies for ecosystem protection and to establish urban containment boundaries. Revise other policies and zoning bylaws⁶² as direction is established for ecosystem protection.

7.3 Landowners

Plan Land Development Carefully

Landowners who wish to develop their land can use various tools outlined below to protect sensitive ecosystems. Landowners who do not wish to develop their land can use many of these same tools to provide long-term protection of the ecosystems on their property.

⁶¹ Refers to Policy Sections in Vernon's OCP.

⁶² Refer to Sensitive Ecosystems Inventory: Central Okanagan Volume 1 (Iverson and Cadrin 2003) pp 135-143 for additional suggestions on zoning and bylaws.

Tools for the Protection of Sensitive Ecosystems

- ◆ Have a qualified professional conduct an environmental impact assessment⁶³ to provide wildlife inventory information and verify and map sensitive ecosystems at an appropriate scale for development planning. Work collaboratively with professional biologists in designing the development.
- Consider using cluster style developments to provide opportunities for development while retaining sensitive ecosystems. Work with city planners to obtain density bonuses in exchange for retention of sensitive ecosystems.
- Where golf courses are a desired component of a development, consider a links style golf course where retention of natural areas within the course is maximized.
- Where a development has been designed to ensure the long-term retention and function of sensitive ecosystems, consider an alternate niche marketing strategy to promote it as an 'ecosystem friendly' development.
- Consider conservation covenants on sensitive lands:
 - They can protect certain values while allowing other uses.
 - They are registered in the Land Title Office.
 - They can provide a tax advantage if they have reduced the property value through restrictions on its use. The covenanting organization can provide a charitable receipt for the difference in land value.

Consider donating land:

- Lands can be donated to a land trust, stewardship organization or government.
- Owners may want to establish conservation covenants prior to donating to ensure the donated land is protected.
- Land donations can provide tax benefits.
- Owners may want to donate the portions of their land designated for retention of sensitive ecosystems.
- Owners may want to consider providing for the donation of their land in their will.

Incorporating SEI Information into Environmental Impact Assessments, page 34.

⁶³ See:

Further Information:

Stewardship Options for Private Landowners in British Columbia⁶⁴

Here Today, Here Tomorrow: Legal Tools for the Voluntary Protection of Private Land in British Columbia⁶⁵

North Okanagan Parks and Natural Areas Trust (president: Jamie Kidston (250) 542-1582)

The Land Conservancy of British Columbia www.conservancy.bc.ca (250) 479-8053

The Nature Trust of B.C. info@naturetrust.bc.ca (250) 924-9771

The Canadian Ecological Gifts Program, Environment Canada <u>www.cws-scf.ec.gc.ca/ecogifts</u> 1-800-668-6767

7.4 General Management Recommendations⁶⁶

This section provides general recommendations to avoid negative impacts to sensitive ecosystems. These recommendations reflect the principles of biodiversity conservation, which apply to all sensitive ecosystems identified in the study area. For other important ecosystems (disturbed grasslands and mature forests), broader conservation-oriented management practices are discussed.

Retain Natural Vegetated Buffers Around and Corridors Between Sensitive Ecosystems

In order to achieve adequate protection, sensitive ecosystems must be buffered from potentially adverse effects of land use practices in adjacent areas. A natural vegetated buffer zone can absorb and avoid negative edge effects that result from animal and human access and disturbance. Buffers also play a role in maintaining microclimate conditions such as temperature and humidity, particularly for wetlands and riparian areas. A vegetated buffer is established by retaining or restoring natural ecosystems that surround sensitive or other important ecosystems. The size of the buffer zone varies by ecosystem type, and by constraints of the surrounding landscape. Fencing may be necessary along some buffers to delineate and protect the buffer from encroaching land uses and inappropriate activities. In planning for protection of a particular site, assessments and recommendations should be made by a qualified professional⁶⁷ to ensure that conservation options are effective.

⁶⁴ Ministry of Environment, Lands and Parks 1996

⁶⁵ Findlay and Hillyer 1994

⁶⁶ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

⁶⁷ See:

Incorporating SEI Information into Environmental Impact Assessments, page 34, step 1 for guidelines on qualified professionals.

In addition to buffering core high priority areas, corridors are needed to connect conservation areas. As with buffers, corridors are vegetated zones established by retaining or restoring natural ecosystems to connect sensitive or other important ecosystems. They are usually longer and narrow than buffers and must be designed to provide sufficient width and natural vegetation cover for the species that use them.

Avoid Direct and Indirect Impacts

Minimizing negative impacts to sensitive ecosystems can be achieved through the following principles:

- Discourage settlement and other development within or adjacent to sensitive ecosystems unless only insignificant negative impacts can be demonstrated;
- Manage access to land and water. Seasonal use-restrictions (e.g., during wildlife breeding seasons), fencing, designated trails, and signage can be used to help avoid the negative effects of access to sensitive areas. Designating trails and areas for limited used (e.g., restricting motorized recreation or mountain bikes) are another access management tool;
- Prevent disturbance of nesting or breeding areas: Known and potential breeding sites, (especially for threatened or endangered species where the Species at Risk Act (SARA) designates them as residences) should be protected from any activity that would disturb breeding wildlife;
- ◆ Control invasive species: A broad weed management plan may be necessary to control and limit the spread of perennial invasive plants such as diffuse knapweed (Centaurea diffusa), sulphur cinquefoil (Potentilla recta) and invasive annual grasses such as cheatgrass (Bromus tectorum). Reclaim disturbed sites using native vegetation species adapted to the site to reduce the potential for weed invasion; and
- ♠ Restore natural disturbance regimes wherever possible. Consider some planned thinning and prescribed burning to restore open forests, restore some encroached grassland habitat, and reduce wildfire hazard in interface areas. Consult a qualified professional to develop and implement a restoration and prescribed burning plan.

Plan Land Development Carefully

Where it is not possible to limit settlement or other developments within or immediately adjacent to a sensitive ecosystem, activities should be carefully planned to minimize adverse effects to the ecosystem. An environmental impact assessment should be completed (see below) and inventories of wildlife, vegetation, including wildlife trees and the extent of tree root systems, terrain features such as cliffs and talus, adjacent water bodies, and other important microhabitats are necessary to determine and minimize the full impact of development on biodiversity at the site.

7.5 Incorporating SEI Information into Environmental Impact Assessments⁶⁸

These are guidelines for people planning land developments according to local government regulations. This information can be helpful in developing an Environmental Impact Assessment under provincial or federal guidelines, which are specified under the following acts:

Canadian Environmental Assessment Act

BC Environment Assessment Act

Environmental Impact Assessments (EIAs) may by necessary where rezoning, subdivision, or other land development occurs within a Development Permit Area or areas where development approval information is required.

ElAs should be conducted early in the development process to allow for more flexibility in creating a development proposal that conserves sensitive ecosystems and wildlife habitat, while meeting the needs of the proponent. The process may be iterative – the consultant(s) conducting the assessment will be given information about the proposed or conceptual development layout, and then will provide specific suggestions on how to make the development reduce impacts to environmental values (e.g., changes in siting, onsite practices or design). Depending on the zoning of the site, the proponent should contact the City of Vernon or Regional District of North Okanagan about the possibility of cluster development and density bonuses.

Sensitive ecosystems mapping can provide information about the environmental impacts of housing and other developments on these ecosystems. The following procedure provides a guide to incorporating SEI information into EIAs.

- 1. The EIA must be prepared by a registered professional biologist together with other professionals⁶⁹ of different expertise, as the project warrants. Hydrologists and hydrogeologists should be consulted where wetlands, riparian areas, and broadleaf woodlands exist within the development area to ensure that proper hydrological function is maintained within these ecosystems. A professional geoscientist should be consulted where there are erosion potential or slope stability hazards. The consultant or team of consultants must have an understanding of wildlife biology, especially for species at risk, geomorphology, environmental assessment, and development planning in British Columbia. Specific expertise in Okanagan Valley wildlife species, wildlife habitat, and ecosystems is highly preferred.
- 2. Digital Sensitive Ecosystems and Wildlife Habitat mapping files should be used to generate a sensitive ecosystems map and wildlife habitat maps for the proposed development area plus a surrounding adjacent area that is at least equal in width to the development area. The soil erosion and slope stability maps should be used to determine if any risks exist in the development area.

⁶⁸ This section comes directly from Iverson and Cadrin (2003).

⁶⁹ A collaborative team of consultants often provides the best combination of experience and expertise in the broad range of fields necessary to complete an effective Environmental Impact Assessment.

- 3. A field assessment should be conducted:
 - a. For those SEI polygons where field data has not been collected, ground-truthing, including an assessment of the quality and condition of the ecosystems, should be conducted. For complex polygons, sensitive ecosystems should be mapped at a larger scale than used in the SEI to show specific locations;
 - b. Where potential significant wildlife habitat is indicated by wildlife habitat maps, verify the presence of wildlife or their habitats by completing detailed species inventories. The inventories should take place during the time(s) of year when wildlife species of interest are expected to be present. It will be difficult to verify the presence of some species. It may be necessary to assume the presence of these species based on habitat suitability and forgo expensive inventories efforts. Each sensitive ecosystem chapter has a list of the potential red- and blue-listed wildlife that could occur in that ecosystem in the North Okanagan. All of these species should be addressed in the assessment; and
 - c. Verify any potential soil erosion (ratings of Moderate, High, or Very High) or slope stability (Class III and up) problems in the field assessment.
- 4. The sensitive ecosystems and wildlife habitat mapping will need to be revised to reflect the field verification work. This may require independent verification prior to inclusion into the local government's digital warehouse.
- 5. Adverse long and short-term and cumulative effects that the proposed development is likely to have on sensitive ecosystems and wildlife habitat (direct and indirect impacts) should then be identified and mitigated or compensated⁷⁰.
- 6. A site plan that incorporates the management recommendations found below for each sensitive ecosystems category and which optimizes conservation of sensitive ecosystems and wildlife habitat, maintains connectivity and buffers around them and corridors between them, and avoids erosion potential or slope stability risks should be generated. The plan should seek to maintain connectivity with sensitive ecosystems and important wildlife habitats in adjacent areas, wherever possible.
- 7. The construction schedule and type of equipment that will minimize or avoid adverse environmental effects should be determined.
- Opportunities for restoration or enhancement of sensitive ecosystems and wildlife habitat should be identified and the criteria used to prioritize these opportunities should be documented.
- 9. The assessment should identify how the proposed development will affect sensitive ecosystems and wildlife habitat, and should provide recommendations to reduce negative impacts and mitigate unavoidable impacts (e.g., restoration or enhancement).

Sensitive Ecosystems Inventory: Vernon Commonage, 2005

35

⁷⁰ The occurrence of nationally vulnerable, threatened, or endangered species, and rare natural plant communities identified by the Conservation Data Centre should be given high priority for conservation management.

8 Wetland

8.1 What are wetland ecosystems?71

Wetlands occur on sites where the water table is at, near, or above the soil surface for a sufficient period of time to influence soil and vegetation development⁷². Wetland ecosystems have plants that are adapted to growing on saturated soils with low oxygen levels.

Wetlands were divided into distinct classes according to their environmental and vegetation characteristics. These classes included swamps, marshes, and shallow water ecosystems; they are described below.

Marsh ecosystems

Marsh wetland ecosystems occur at the edge of shallow open water, ponds, and lakes, on the edges of larger wetlands, and in depressions where the water table is above or near the soil surface. Rushes, cattails, or occasionally sedges usually dominate marshes, and some floating aquatics such as duckweed were often present.

Shallow water ecosystems

Shallow water ecosystems are either areas of open water that are intermittently or permanently flooded up to 2 m in depth at midsummer⁷³, or are ponds that are greater than 2m in depth, but are less than 50 ha in area. Vegetation is limited to submerged or floating aquatic plants with less than 10% cover of vegetation emerging above the water surface. Shallow water ecosystems often occur in association with marshes.

⁷¹ Adapted from Iverson and Cadrin 2003.

⁷² MacKenzie and Banner 1999

⁷³ Voller 1998

Vegetation

Marsh	Shallow Water	
***		Schoenoplectus spp.
**		Typha latifolia
*		Carex spp.
**		Typhus latifolia
**	**	Lemna minor
	*	Potamogeton spp.
	**	*** * * * * * * * * * * * *

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, *** abundant species.

8.2 Why are they important?74

Ecological attributes and socio-economic values of wetland ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Natural plant communities recommended for the red- or blue- list

Baltic rush (Juncus balticus)

Great bulrush (Schoenoplectus acutus)

Common spike-rush (Eleocharis palustris)

Rare⁷⁵ vertebrates of wetlands

Peregrine Falcon (R, COSEWIC-T) (Falco peregrinus ssp. anatum)

American Avocet (R) (Recurvirostra americana)

Great Basin Spadefoot (B, COSEWIC-T) (Spea intermontana)

Western Toad (COSEWIC-SC) (Bufo boreus)

Painted Turtle (B) (Chrysemys picta)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

American Bittern (B) (Botaurus lentiginosus)

Great Blue Heron (B) (Ardea herodias)

Sandhill Crane (B) (Grus canadensis)

California Gull (B) (Larus californicus)

Short-eared Owl (B, COSEWIC-SC) (Asio flammeus)

Bobolink (B) (Dolichonyx oryzivorus)

Western Small-footed Myotis (B) (Myotis ciliolabrum)

Fringed Myotis (B, COSEWIC-SC) (Myotis thysanodes)

Townsend's Big-eared Bat (B)(Corynorhinus townsendii)

- Rarity: Most wetland natural plant communities have been recommended for rare status (see above).
- High biodiversity: Ponds and marshes are focal points for wildlife because of their infrequent occurrence in this landscape. Wetlands provide wildlife and biodiversity values that are disproportionate to the area they occupy on the land base. Wetland vegetation provides food,

⁷⁴ Adapted from Iverson and Cadrin 2003.

⁻

⁷⁵ Provincially endangered or threatened (R; red-listed) or vulnerable (B; blue-listed) vertebrate species and natural plant communities as of June 2005 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2005, are noted as endangered (E), threatened (T), or of special concern (SC).

shelter, breeding habitat, and cover for many species of amphibians, reptiles, mammals, birds, and insects. Wetland vegetation provides food for many aquatic organisms. Ponds are important watering sites for many species, and in the study area provides Painted Turtle and spadefoot habitat. Wetlands are also sources of insects that provide food to many different species of birds and bats.

Fragility: Wetlands are vulnerable to a range of human disturbances such as vegetation removal, dredging, diking, filling, and trampling by livestock. Small changes in hydrology such as reduced flows or lowered water tables, irrigation run-off, and urban run-off (including stormwater drainage) and other sources of nutrients including fertilizers and livestock manure can change and reduce the diversity of wetland communities. Such changes may occur away from the wetland, but can still influence it. Intensive recreational activities in and near wetlands can reduce plant cover, compact soil, and disturb nesting birds.

Wetlands are vulnerable to overuse by livestock, but can still be extremely valuable and may recover quickly with improved livestock management.

- Maintenance of water quality: Properly functioning wetlands store and filter water, and maintain water quality. They reduce the levels of sediment, nutrients, and toxic chemicals in outflow water.
- Social values: Wetlands provide water storage and filtration and opportunities for wildlife
 viewing, education, and aesthetic enjoyment. They are focal points in the arid landscape of the
 Okanagan. They can add to real estate values in adjacent areas and can provide a tourist
 attraction.

8.3 Status

We found that wetland ecosystems were rare in the study area; they occupied 85 ha or 1.3% of the study area land base. Many wetlands in the Okanagan Valley have been filled in, or their hydrology has been altered through changes in land use in the surrounding area. For example, in the area between Penticton and Osoyoos, 85-90% of large marshes have been lost⁷⁶. Because of the more gently rolling terrain, the study area has an unusually high proportion of wetlands remaining relative to other parts of the Okanagan Valley. Wetlands have been influenced by effluent irrigation run-off resulting in unnaturally high nutrient loads and different hydrology, and by domestic cattle grazing in the study area, together reducing plant cover and changing species on many sites. Such sites are still extremely valuable for wildlife and can recover quickly with effective range management. Future housing and other developments in the study area may alter, isolate, or cause losses of wetlands.

Shallow water (60 ha) was the most common wetland type in the study area; marshes were uncommon (24 ha).

⁷⁶ Voller 1998

8.4 Management Recommendations⁷⁷

The ecological functions that wetlands provide, specifically water storage and maintenance of water quality, are provided free of charge. When these functions are removed through the loss or degradation of wetlands, it can be an exorbitant cost to replace them through technological means or re-create wetlands. The ecological functions and rarity of wetlands requires conservation of all remaining wetlands, including the maintenance of buffers to preserve the hydrologic regime, wetland functions, and connectivity to other ecosystems. Community leaders and local governments should be diligent in promoting the protection of every wetland in their area whether the wetland is on private or public lands.

Retain Natural Vegetated Buffers around Wetland Ecosystems

Wetlands can be negatively affected by adjacent land use that alters wetland hydrology. Natural vegetated buffers should be retained or established with native vegetation to reduce edge effects and protect points of water inflow and outflow locations around the wetland. All native vegetation should be maintained in the wetland and the associated riparian ecosystem around the wetland. Wetland ecologists should be consulted when delineating vegetation buffers around wetlands.

Avoid Direct and Indirect Impacts

- Prevent human settlement and other land developments within, or adjacent to, wetland
 areas. It is strongly recommended that such activities in and around wetlands be avoided.
 Roads should not be built near wetlands as they can alter hydrology and lead to extensive
 mortality of wildlife species that use wetlands. Roads should never encircle wetlands and
 should be set back as far as possible (more than 50m; distance depends on local conditions;
 many should provide opportunities for painted turtle nesting along with special fencing to
 prevent road mortality).
- Maintain wetland hydrology. Draining or ditching in or around wetlands, the filling in of
 wetlands, irrigation run-off, and the discharge of stormwater into such sites should be
 avoided. Vegetation cover should not be removed as this increases surface runoff and
 reduces the amount of groundwater infiltration, thus reducing available summer moisture.
 Additionally, areas of impervious ground surfacing (i.e., pavement) should be minimized.
 Hydrologists familiar with wetland function should be consulted to determine how to protect
 wetland hydrology.
- Maintain water quality. Wetlands store and filter water, and maintain water quality; therefore, the addition of urban storm drainage, agricultural runoff, and sediment from road building into wetlands should be prevented. Wetlands that have artificially high nutrient levels may experience algal blooms, and vegetation in some marshes may convert from sedges or rushes to cattails.
- Restrict recreational access. Intensive recreational use of shoreline areas can reduce plant cover, compact soil, and disturb wildlife. Roots of trees and shrubs can be easily damaged by trampling and trail development in the moist soils of wetlands. Trails often become wide in wet, muddy areas, and sediments from trail damage may affect amphibians

Sensitive Ecosystems Inventory: Vernon Commonage, 2005

39

⁷⁷ Many of the recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

and insects. Motorized recreation, mountain biking, and horseback riding should be excluded from wetlands. In areas where trails to viewpoints in wetlands are desired, raised boardwalks should be used (avoid using rock or bark mulch on trails).

- Manage livestock access. Livestock use of many wetlands and ponds for water has
 significantly altered these sites. Overuse of wetlands by livestock can lead to soil compaction,
 damage and loss of vegetation cover and structure, and introductions of invasive plant
 species. Vegetation on many sites can quickly recover, however, when cattle use is reduced.
 Alternative watering sites, and fencing to allow a single access point to the water source can
 be used to maintain wetland functions and values while allowing some cattle use.
- Prevent disturbance of nesting or breeding areas. Recreational activities along wetland
 edges and canoeing in wetlands can impact amphibians, nesting waterfowl, and other birds,
 and thus, should be avoided during the breeding season (May through August). Disturbance
 of soils around wetlands, especially sandy soils that might be used by Painted Turtles for
 egg-laying or spadefoots for burrowing, should also be avoided.
- Restrain pets near wetlands during spring and summer. Pets should be controlled to avoid disturbances to turtles, amphibians, waterfowl, and other birds during the breeding season (May through August).
- Allow natural wetland processes to maintain wetland functions and values. Beaver
 activity, flooding, seasonal drawdown, and groundwater recharge and discharge should be
 maintained. Inflow or outflow streams should not be diked or channelized.
- Avoid use of pesticides and fertilizers in or near wetlands. Follow the restrictions for each pesticide and ensure that winds do not cause sprays to drift and contaminate the water body. Roundup (glyphosate) is particularly toxic to amphibians⁷⁸.

_

⁷⁸ Relvea 2005

9 Riparian

9.1 What are riparian ecosystems?79

Riparian simply refers to areas adjacent to water bodies such as lakes, rivers, streams, and ponds⁸⁰. In this study, riparian ecosystems were defined as ecosystems that are adjacent to, and significantly influenced by a water body. That is, these sites are moister than and have a plant community that is distinct from the surrounding upland. Riparian ecosystems are typically linear in nature. Wetlands are riparian in nature but were described separately because of their distinct ecological nature.

Riparian ecosystem vs.
Riparian zone

'Riparian ecosystems' vary in width and are delineated by site-specific vegetation, soil, and topographic features.

The term 'riparian zone' is often used to describe a fixed width management area surrounding streams and wetlands.

For this SEI, riparian ecosystems were classified into structural stages (Table 9) in order to identify different habitat values.

Table 9. Structural stages of riparian ecosystems

Code	Name	Definition
RI:1	Unvegetated or sparsely vegetated	Less than 10% cover of vegetation
RI:2	Herb	Herb dominated, shrub cover <20%, tree cover less than 10%
RI:3	Shrub/herb	Shrub cover 20% or greater, tree cover less than 10%
RI:4	Pole sapling	Trees are >10m tall and have 10% or greater cover, dense stands, generally 10-40 years old
RI:5	Young forest	Trees are >10m tall and have 10% or greater cover, dominated by young trees about 40-80 years old
RI:6	Mature forest	Trees are >10m tall and have 10% or greater cover, dominated by mature trees about 80-250 years old; trees may be younger in broadleaf forests.
RI:7	Older forest	Trees are >10m tall and have 10% or greater cover, many tree ages, many trees are 250 years or older; trees may be younger in broadleaf forests.

For this study, riparian ecosystems were also divided into distinct classes (gully and fringe) according to their environmental and vegetation characteristics; these are described below.

⁷⁹ Adapted from Iverson and Cadrin 2003.

⁸⁰ MacKenzie and Banner 1999; Voller 1998

Gully riparian

Gully riparian ecosystems occurred at the base and lower slopes of moderate to steep-sided linear sites (small valleys or ravines) with significant moisture. These ecosystems had either permanent or intermittent surface water flow, or significant subsurface flow, but were usually not subject to flooding. These were also rich and productive sites, providing habitat that is distinctly different from the surrounding landscape. These ecosystems usually had a mixed coniferous and deciduous overstory with shrubby understories.

Fringe riparian ecosystems

Ponds, marshes, and Okanagan Lake typically had fringe riparian ecosystems associated with their shorelines. This class also includes sites with significant seepage that are sensitive to soil and hydrological disturbances. These ecosystems usually had trembling aspen overstories with shrubby understories.

Vegetation

	Gully	Fringe	_
Trees	-		
black cottonwood		*	Populus balsamifera ssp. trichocarpa
Douglas-fir	**	*	Pseudotsuga menziesii
trembling aspen	***	***	Populus tremuloides
Shrubs			
common snowberry	**	**	Symphoricarpos albus
red-osier dogwood	**	**	Cornus stolonifera
thimbleberry	**		Rubus parviflorus
Douglas maple	**	**	Acer glabrum
water birch	**	**	Betula occidentalis
Nootka rose	**	**	Rosa nutkana
Forbs			
Star-flowered false Solomon's seal	**	*	Maianthemum stellatum
Horsetail	*		Equisetum spp.

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, ** abundant species.

9.2 Why are they important?81

Ecological attributes and socio-economic values of riparian ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

⁸¹ Adapted from Iverson and Cadrin 2003.

Rare82 natural plant communities of riparian ecosystems

Black cottonwood – Douglas-fir – common snowberry – red-osier dogwood (R) (*Populus balsamifera* ssp. *trichocarpa - Pseudotsuga menziesii - Symphoricarpos albus - Cornus stolonifera*)

Douglas-fir / common snowberry – birch-leaved spirea (B) (Pseudotsuga menziesii / Symphoricarpos albus - Spiraea betulifolia)

Douglas-fir - paper birch / Douglas maple (B) (Pseudotsuga menziesii - Betula papyrifera / Acer glabrum)

Rare vertebrates of riparian ecosystems

Western Screech-Owl (R, COSEWIC-E) (Megascops kennicottii ssp. macfarlanei)

Yellow-breasted Chat (R, COSEWIC-E) (Icteria virens)

Brewer's Sparrow (R) (Spizella breweri ssp. breweri)

Great Basin Spadefoot (B, COSEWIC-T) (Spea intermontana)

Gopher Snake (B. COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Great Blue Heron (B) (Ardea herodias)

Lewis's Woodpecker (B, COSEWIC-SC) (Melanerpes lewis)

Townsend's Big-eared Bat (B) (Corynorhinus townsendii)

- Rarity: Their conservation status (B.C. Conservation Data Centre) lists most riparian natural plant communities as rare (see above).
- High biodiversity: Riparian ecosystems support disproportionately high numbers of species
 relative to the area they occupy on the land base. They provide wildlife with water, cover,
 breeding habitat, and food. The wide diversity of plants, invertebrate organisms, and structural
 complexity of these ecosystems provide many habitat niches. Riparian vegetation provides
 food for many aquatic organisms. Gullies generally lack surface water flow but often have
 lush, productive vegetation that provides significant cover and food for wildlife.
- Fragility: Riparian ecosystems are strongly influenced by adjacent water bodies and, thus, they are sensitive to disturbance and changes in hydrology.
- Aquatic habitat protection and water quality: Riparian vegetation supplies most of the
 organic matter and plays a large role in determining the composition of the aquatic invertebrate
 community. Riparian vegetation also provides a source of large organic debris (e.g., logs).
 Riparian areas are important for trapping sediments and maintaining water quality. The root
 systems of riparian vegetation stabilize stream banks, thus reducing erosion and sediment
 inputs to the water. Riparian vegetation plays a key role in controlling water temperatures by
 reducing incoming radiation.
- Wildlife corridors: Within the study area, gullies form natural wildlife corridors connecting lower and upper slopes of the study area and connect different types of ecosystems.
- Social values: Riparian areas provide water retention and filtration, prevent erosion, and provide natural areas, and opportunities for education, bird watching, wildlife viewing, and walking and hiking. They are cooler places to enjoy nature on hot summer days. Retention of

⁸² Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of June 2005 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2005, are noted as endangered (E), threatened (T), or of special concern (SC).

riparian corridors can enhance and maintain property values and attract tourists by retaining the natural beauty that many people seek out.

9.3 Status

Riparian ecosystems are naturally rare in the study area and occupied only 2.6% (178 ha) of the study area – predominantly gully (122 ha) ecosystems with some fringe (55 ha) ecosystems.

Only 1% of riparian ecosystems in the study area were in the old forest structural stage. Another 14% was mature forest and 63% was young forest, indicating that many riparian ecosystems had been altered by human disturbance. Historically, riparian ecosystems would have been predominantly old and mature structural stages.

Conservation of all riparian ecosystems should be a priority. In all structural stages, it is important to retain all riparian vegetation to preserve stream bank and soil stability, water temperature and quality, and wildlife habitat values.

9.4 Management Recommendations^{83,84}

Riparian ecosystems have attracted considerable attention in the last decade because of increased awareness of their value in stream and river protection. Most protection has focussed on fisheries or wildlife values, with less emphasis on the diversity and ecology of riparian plant communities.

Efforts should be made to maintain connections with adjacent upland ecosystems and to reduce fragmentation in order to preserve wildlife corridors. Where possible, vegetation and ecological functions of altered riparian ecosystems should be restored.

The following recommendations will aid in the site management of riparian ecosystems.

Retain Natural Vegetated Buffers around Riparian Ecosystems

Wherever possible, natural vegetated buffers should be retained or established with native vegetation around riparian ecosystems. Buffers help maintain the integrity of riparian areas. Buffers need to be large enough to protect the core ecosystem from edge effects such as increased invasive plant species, increased temperature, decreased humidity, and increased noise and disturbance to wildlife.

Maintain wildlife corridors and connectivity between riparian areas and adjacent habitats by retaining both riparian and adjacent habitats.

Avoid Direct and Indirect Impacts

- Prevent human settlement or other development within or adjacent to riparian areas.
- Riparian vegetation should be maintained where it is present, and restored where it
 has been lost. Vegetation maintains the cohesive nature of banks and provides inputs of
 organic matter into soils, which increases their capacity to adsorb and store water.

⁸³ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003

⁸⁴ There are no fish-bearing streams in the study area. Additional management recommendations for riparian ecosystems where fish may be present can be found in Iverson and Cadrin 2003.

Additionally, riparian vegetation moderates water temperatures, provides an important source of food for many aquatic organisms, and provides important wildlife cover for nesting and feeding.

- Plan for controlled recreational access to some areas, and access restrictions (e.g., with fencing and railings) to sensitive areas in order to manage the effects of recreation and other human uses.
- Where practical or necessary, **restrict livestock access** by using fencing. To allow safe wildlife access, fences should be top-railed, and bottom wires should be 45cm (18") above ground level (this height is for cattle, lower bottom wires are needed for sheep and other livestock).
- **Control pets.** Pets should be restrained and hunting dogs should be trained away from riparian areas during the spring and summer. Other disturbances to waterfowl during the nesting season should also be avoided.
- Protect structural features: Large trees, snags, and logs provide critical nesting habitat for many species of birds and animals. Large, old trees and snags are especially important for birds, bats and other animals. Maintain structures such as rocks and logs within streams. They provide important habitat and prevent erosion.
- Avoid use of insecticides in or near water and important foraging areas for wildlife. Insecticide use near foraging habitat for animals that feed on insects (e.g., Western Screech-Owl, spadefoots, Townsend's Big-eared Bat and amphibians) should be avoided.
- Allow natural disturbances to occur. Flooding, windthrow, and channel changes are recognised as important factors in the creation and maintenance of high diversity riparian habitats and provide important habitat attributes for fish. Leave sufficient buffers to allow these events and processes to occur wherever possible.

Plan Land Development Carefully

Where human settlement or other development is permitted adjacent to a riparian area, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional⁸⁵.
- Plan, design, and implement land development activities to avoid adversely affecting or disturbing:
 - riparian vegetation;
 - large old trees;
 - threatened or endangered species or natural plant communities;
 - natural processes such as stream flow, flooding, and stream channel movement;
 - wildlife nesting or denning sites;
 - standing dead trees, and downed trees and logs; and

Incorporating SEI Information into Environmental Impact Assessments, page 34.

⁸⁵ See:

- riparian corridors, and connectivity with upland communities.
- Design roads carefully. Roads should be narrow and set back from the riparian ecosystem
 to ensure that both the riparian vegetation and bank stability are maintained. If roads must
 cross riparian ecosystems, bridges are recommended to minimize disturbance of soil and
 vegetation and to provide a wildlife corridor below. Where roads encroach upon riparian
 ecosystems, narrow the width of the road and avoid side-casting material into the riparian
 area.
- Design trails carefully. Trails should provide a direct route to a viewing area or crossing, and should avoid sensitive vegetation, seepage areas and wetlands, and stream banks or gully side walls with easily eroded soils.
- Protect endangered, threatened, or vulnerable species or plant communities by addressing the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as trees with cavities, large old trees, and snags; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.
- Prevent disturbance of nesting and breeding areas. Avoid development activities around features including dens, raptor nest or perch trees, woodpecker cavities, and bat roosts from May through August.
- Ensure adequate sediment and erosion control measures are implemented.

10.1 What are old forest ecosystems?86

Old forest ecosystems are forests that are dominated by large, old trees. Old forests historically would have dominated the forested patches in the study area. Throughout the study area, historical harvesting of large, old ponderosa pine and Douglas-fir has greatly reduced the area of old forest ecosystems. Old forests were mapped where polygons included old structural stage ecosystems except for old riparian forests, which were included in the Riparian Forest category.

Historically, most forests had frequent surface fires that killed most regeneration and allowed few new trees into the overstory. Overstories were generally multi-aged with a largely single-layered canopy, and understories were open and dominated by grasses and shrubs. Frequent fire also

limited the occurrence of dead wood to scattered large snags and large, downed wood.

The exclusion of fires has caused formerly open, park-like forests to infill with waves of smaller trees (this is referred to as forest ingrowth; historically, most of these small trees would have been killed by periodic fires). Old forests still occur where large, old trees have not been selectively harvested. In most cases these stands have undergone some forest ingrowth and, thus, are not fully representative of the historical forests. Old trees, however, are structurally very important for wildlife, and old forest sites have the best potential for restoration to historical stand structure.

Vegetation

vegetation		
Trees		
ponderosa pine	**	Pinus ponderosa
Douglas-fir	**	Pseudotsuga menziesii
Shrubs		
common snowberry	**	Symphoricarpos albus
tall oregon-grape	**	Mahonia aquifolium
saskatoon	**	Amelanchier alnifolia
Grasses		
bluebunch wheatgrass	**	Pseudoroegneria spicata
rough fescue	**	Festuca campestris
pinegrass	**	Calamagrostis rubescens
blue wildrye	*	Elymus glaucus
Forbs		
arrowleaf balsamroot	**	Balsamorhiza sagittata
heart-leaved arnica	*	Arnica cordifolia

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, ** abundant species.

⁸⁶ Adapted from Iverson and Cadrin 2003.

10.2 Why are they important?87

Ecological attributes and socio-economic values of old forest ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Rare88 natural plant communities of old forests

Douglas-fir – ponderosa pine / bluebunch wheatgrass (B) (*Pseudotsuga menziesii - Pinus ponderosa / Pseudoroegneria spicata*)

Rare vertebrates of old forests

Swainson's Hawk (R) (Buteo swainsonii)

White-headed Woodpecker (R, COSEWIC-E) (Picoides albolarvatus)

Badger (R, COSEWIC-E) (Taxidea taxus)

Racer (B, COSEWIC-SC) (Coluber constrictor)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Ferruginous Hawk (B, COSEWIC-SC) (Buteo regalis)

Great Blue Heron (B) (Ardea herodias)

Flammulated Owl (B, COSEWIC-SC) (Otus flammeolus)

Lewis's Woodpecker (B, COSEWIC-SC) (Melanerpes lewis)

Townsend's Big-eared Bat (B) (Corynorhinus townsendii)

- Rarity: Old forest natural plant communities are rare (in addition to the plant community listed above, all other old forest plant communities have been recommended for rare status).
- High biodiversity: Old forests provide habitat for a wide variety of wildlife, plant, and
 invertebrate species. Old forest ecosystems have many unique and important structural
 attributes. Typically these forests are open, and, thus, provide good visibility from predators for
 ungulates. Large old trees provide good snow interception, enabling animals such as mule
 deer to move easily through old forests in the winter.
- Specialised habitats: Many species depend on features found only in old forests. The large, old trees in these forests provide cavities for many bird and small mammal species.
 Additionally, these ecosystems usually have scattered large snags and large woody debris which provide critical habitats for many species, including some species at risk.
- **Social values**: Old forests provide opportunities for education, and wildlife viewing. Large old trees provide attractive and aesthetic views that can raise real estate values in adjacent areas, and can draw tourists into the area.

⁸⁷ Adapted from Iverson and Cadrin 2003.

⁸⁸ Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of August 2002 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2002, are noted as endangered (E), threatened (T), or of special concern (SC). See Glossary for further discussion.

10.3 Status

Historically, old forests likely dominated the majority of the forested portion of the landscape (about 35% of the study area) but now there are only small remnants. Most old forests had been lost to selection logging. The inventory showed that only 0.7% (49 ha) of the study area was old forests; these occurred in very small and fragmented patches, mostly in very rocky places not readily accessible for logging. There is a need to conserve all remaining old forests, and retain and restore stand structure in some mature forests for recruitment to old forests.

10.4 Management Recommendations®

Loss of old forest ecosystems and forest ingrowth in remaining old forest areas has resulted in the loss of many habitat features (e.g., grassy understory vegetation) and increased fire hazard.

The following recommendations will aid in the site management of old forest ecosystems.

Retain Natural Vegetated Buffers around Old Forest Ecosystems

Wherever possible, natural vegetated buffers should be retained or established with native vegetation around each old forest ecosystem. Buffers help prevent edge effects such as invasive weed colonisation and reduce indirect disturbances. When they are present, mature forests form excellent buffers around old forest ecosystems, especially when they have been thinned. Many species that are reliant on old forests also use other habitats; it is important to maintain connectivity with other ecosystems.

Avoid Direct and Indirect Impacts

- **Discourage human settlement or other development** within or adjacent to old forest ecosystems.
- Manage access to minimise vehicular and livestock access. Where trails can be safely
 established, the appropriate recommendations listed below under "Plan Land Development
 Carefully" should be followed.
- Protect large old trees and snags. Old trees and snags provide critical nesting habitat for many species of birds, bats, and other wildlife.
- Reduce ingrowth. Cut down and remove small ingrowth trees.
- Prevent disturbance of nesting sites and breeding areas (e.g., large trees with cavities).
- Control invasive species. Managing human and livestock access, and treating existing
 invasive plant species will help maintain the ecological integrity of old forest sites. Invasive
 plant control can include hand-pulling, and native species can be planted to help prevent the
 establishment of more invasive plants. Herbicides and biological control agents are other
 possible treatments. The BC Ministry of Forests or BC Ministry of Agriculture and Lands can
 be consulted to determine the appropriate method and timing of treatment for invasive plant
 species.

⁸⁹ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

- Avoid use of insecticides in, or near, important foraging areas for wildlife. Insecticide
 use near foraging habitat for animals that feed on insects (e.g., Flammulated Owl and Lewis's
 Woodpecker) should be avoided.
- Recruit new old forests. Given that old forests are extremely limited within the study area, new old forests should be encouraged by proper management of mature forests (see Management Recommendations for mature forests on page 76).

Plan Land Development Carefully

Where development is allowed near old forest ecosystems, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional 90.
- Plan, design and implement land development activities (including trails and recreation access) to minimize impacts to old forest ecosystems by addressing the following recommendations:
 - protect large, old trees and snags, and understory vegetation;
 - locate settlements and other developments away from existing large, old trees and snags;
 - design linear corridors to be as narrow as possible, and configure them to allow wildlife crossing; and
 - restore native vegetation where it has been disturbed. Seed or plant native species from nurseries, or plant native species that have been rescued from other development sites.
 Ensure that any native plant material used is weed-free.
- Design trails carefully. Ensure that trails do not affect the root systems of trees, and will not
 create soil erosion problems. Trails should be designed to discourage use by vehicles (e.g.,
 ATVs and dirt bikes), horses, and mountain bikes. Fences may be necessary in some places
 to prevent access. Trails should be closely monitored for noxious and invasive plants. If
 invasive plants are present, trails should be closed until the invasive plants have been treated
 and are under control to avoid spreading them.
- Protect endangered, threatened, or vulnerable species or plant communities by addressing the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as large old trees and snags; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.
- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.

Incorporating SEI Information into Environmental Impact Assessments, page 34.

⁹⁰ See:

•	Protect nestir assessment.	ng and denning s Such features inc	ites that were id	dentified in the eas, and perch tre	environmental ees.	impact

11 Grasslands

11.1 What are grassland ecosystems?91

Grasslands in the study area were dominated by bunchgrasses with scattered forbs and a microbiotic crust. The grasslands of the North Okanagan represent a portion of the Pacific Northwest bunchgrass grasslands that are centred in south-east Washington, north-east Oregon and Idaho⁹².

Areas where grasslands occurred are generally too hot and dry for forests to establish. Often, grasslands occurred on medium and finer textured soils where they are better able to capture the surface moisture than trees. Moisture is effectively funnelled by the conical shape of bunchgrasses and captured by extensive grass roots in the upper portions of the soil (generally the top 30cm), leaving little moisture available for tree seedlings. In comparison, trees are usually able to establish on moist sites, and on coarse soils (sandy, gravely) where moisture is available at depth. Additionally, grasslands are favoured in environments where frequent, low-severity fires historically occurred and most young trees were killed by fire.

Much of the diversity within grasslands is found in the microbiotic crust that covers the soil surface between plants. The microbiotic crust is composed of lichens, mosses, algae, bacteria and cyanobacteria. Crusts slow evaporation, prevent wind and water erosion, and contribute nutrients through nitrogen fixation. The microbiotic crust is, however, sensitive to disturbance by vehicles, people, mountain bikes, and livestock.⁹³

Arrowleaf balsamroot is a common grassland and open forest plant. The underground parts of the plant were an important food for First Nations.

Bluebunch wheatgrass is a common bunchgrass in warm and dry grasslands and open forests. It is shown here with yarrow (white flowers) and brown-eyed susan (yellow flowers).

⁹¹ Adapted from Iverson and Cadrin 2003.

⁹² Tisdale 1947

⁹³ Williston 1999

For this SEI, grassland ecosystems were divided into distinct classes (grassland and shrubland) according to their environmental and vegetation characteristics; these are described below.

Grassland ecosystems

Bunchgrasses, most commonly bluebunch wheatgrass, rough fescue, and Idaho fescue dominated healthy grassland ecosystems in the study area. Bunchgrasses are designed to funnel moisture to the center of the plant, and have extensive fine roots to capture moisture in the upper horizons of the soil. Grassland soils are usually fine- or medium-textured, and soils are topped by a thick, dark-coloured horizon enriched by organic matter from the decomposition of grass roots.

Shrubland ecosystems

Shrubs, most commonly snowberry and roses, dominated shrubland ecosystems in the study area. Shrublands occurred in grassland areas, but were moister than the surrounding grasslands as they occurred in depressions and moist pockets that tended to collect snow and some run-off. Soils were dark (organic rich), typically medium-textured, and very rich.

Vegetation

	Grassland	Shrubland	
Shrubs			
common snowberry		***	Symphoricarpos albus
roses		***	Rosa spp.
Grasses			
bluebunch wheatgrass	**		Pseudoroegneria spicata
rough fescue	**		Festuca campestris
Idaho fescue	**		Festuca idahoensis
Forbs			
arrowleaf balsamroot	**	*	Balsamorhiza sagittata
parsnip-flowered buckwheat	**		Eriogonum heracleoides
daisies or fleabanes	**	*	Erigeron spp.
silky lupine	**	*	Lupinus sericeus
lemonweed	**	*	Lithospermum ruderale
Mosses and Lichens			
sidewalk moss	**		Tortula ruralis
clad lichens	**		Cladonia spp.

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, ** abundant species.

11.2 Why are they important?94

Ecological attributes and socio-economic values of grassland ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Many of the forbs that grow in grasslands, including arrowleaf balsamroot (*Balsamorhiza sagittata*) and mariposa lily (*Calochortus macrocarpus*) were important food sources for aboriginal peoples.

Rare⁹⁵ natural plant communities of grasslands:

Bluebunch wheatgrass – balsamroot (R) (Pseudoroegneria spicata - Balsamorhiza sagittata)

Idaho fescue – bluebunch wheatgrass (R) (Festuca idahoensis - Pseudoroegneria spicata)

Prairie rose – Idaho fescue (R) (Rosa woodsii / Festuca idahoensis)

Rare vertebrates of grasslands

Swainson's Hawk (R) (Buteo swainsonii)

Ferruginous Hawk (R, COSEWIC-SC) (Buteo regalis)

Prairie Falcon (R) (Falco mexicanus)

Upland Sandpiper (R) (Bartramia longicauda)

Burrowing Owl (R, COSEWIC-E) (Athene cunicularia)

Grasshopper Sparrow (R) (Ammodramus savannarum)

Brewer's Sparrow (R) (Spizella breweri ssp. breweri)

Lark Sparrow (R) (Chondestes grammacus)

Preble's Shrew (R) (Sorex preblei)

Merriam's Shrew (R) (Sorex merriami)

Badger (R, COSEWIC-E) (Taxidea taxus)

Pallid Bat (R, COSEWIC-T) (Antrozous pallidus)

Great Basin Spadefoot (B, COSEWIC-T) (Spea intermontana)

Painted Turtle (B) (Chrysemys picta)

Racer (B, COSEWIC-SC) (Coluber constrictor)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Sharp-tailed Grouse⁹⁶ (B) (*Tympanuchus phasianellus* ssp. columbianus)

Long-billed Curlew (B, COSEWIC-SC) (Numenius americanus)

Short-eared Owl (B, COSEWIC-SC) (Asio flammeus)

Lewis's Woodpecker (B, COSEWIC-SC) (Melanerpes lewis)

Fringed Myotis (B. COSEWIC-SC) (Myotis thysanodes)

Great Basin Pocket Mouse (B) (Perognathus parvus)

Western Harvest Mouse (B, COSEWIC-SC) (Reithrodontomys megalotis)

Nuttall's Cottontail (B, COSEWIC-SC) (Sylvilagus nuttallii ssp. nuttallii)

⁹⁴ Adapted from Iverson and Cadrin 2003.

⁹⁵ Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of August 2002 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2002, are noted as endangered (E), threatened (T), or of special concern (SC). See Glossary for further discussion.

⁹⁶ Thought to be extirpated from the area.

- Highly threatened: Grasslands commonly occur on sites that are very amenable to development – both for agriculture and housing – and many grasslands have already been lost to agricultural or urban development. Overuse by domestic livestock and invasive plants also threaten remaining grasslands. Grasslands are recognised as one of British Columbia's most threatened ecosystems⁹⁷. Only 8% of the grasslands in the province are protected⁹⁸.
- Rarity: All grassland native plant communities are listed by the B.C. Conservation Data Centre (see above).
- High biodiversity: Grasslands and shrublands support a unique assemblage of species that
 includes a high proportion of endangered species. Grasslands, in combination with other
 ecosystems, are used by many species.
- **Sensitivity to disturbance**: Grasslands are very sensitive to disturbances including off-road vehicle use and mountain biking, and recovery can take many decades. Disturbance to grassland soils can damage the fragile microbiotic crust, and can allow noxious weed invasions, which can slow or limit recovery.
- **Social values**: Grasslands provide opportunities for education, wide open spaces for walking and hiking, wildlife viewing, and aesthetic enjoyment. Grasslands are particularly attractive in spring with their vibrant display of wildflowers. The open, natural spaces that grasslands provide can add to real estate values in adjacent areas, and can draw tourists into the area.

11.3 Status

We found that grassland ecosystems covered 6% (403 hectares) of the study area. The majority of these were grasslands (333 ha), and only a few were shrublands (5 ha). The proportion of grasslands in the study area reflects the importance of the study area to the conservation of grasslands.

All grassland ecosystems are a high priority for conservation considering that many have been lost to agricultural and urban settlement, especially outside of the study area, and many sites have been invaded by non-native plants. Grasslands with 20-50% non-native vegetation were included in the Disturbed Grasslands category.

11.4 Management Recommendations⁹⁹

The following recommendations will aid in the site management of grassland ecosystems.

Retain Natural Vegetated Buffers around Grassland Ecosystems

Site assessments should be conducted to delineate natural vegetated buffers that should be retained or established with native vegetation such that the buffer will maintain continuity with adjacent sensitive ecosystems and wildlife habitat and protect the grassland ecosystem from edge

⁹⁷ Canadian Parks and Wilderness Society 1996

⁹⁸ Grasslands Conservation Council of B.C. 2002

⁹⁹ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

effects. Buffers are particularly important around grassland ecosystems because of their vulnerability to disturbance and susceptibility to weed invasions.

Avoid Direct and Indirect Impacts

- Discourage human settlements or other developments within or adjacent to all grassland ecosystems.
- Manage access. All motorized vehicles should be restricted to existing roads. Mountain
 bikes should be restricted to existing or carefully planned trails that are weed free, and not
 subject to erosion; otherwise, these trails should be closed until weed problems have been
 controlled. Trails can create erosion problems, disturb fragile vegetation, and spread or
 introduce invasive weed species. Existing trails with erosion problems need to be
 rehabilitated and restored.
- **Prevent disturbance of nesting sites and breeding areas**. Many grassland birds are ground-nesters.
- **Protect large old trees and snags.** Scattered trees or snags are extremely important for wildlife in grassland areas. These trees can be isolated structures in grassland areas.
- Manage livestock use. Livestock grazing needs to be carefully managed to ensure that
 ecological values associated with grassland ecosystems are maintained. Bunchgrasses are
 damaged by season-long grazing. Careful monitoring should be implemented to ensure that
 grazing levels and timing meet management objectives for the site.
- Control invasive species. Managing human and livestock access and treating existing invasive species will help maintain the ecological integrity of grassland ecosystems. Invasive plants can be sprayed or hand-pulled, and native species can be planted to help prevent the establishment of more invasive plants. Herbicides and biological control agents are other possible treatments. It is important that the right treatment method is used to ensure it is effective. The BC Ministry of Forests or BC Ministry of Agriculture and Lands can be consulted to determine the appropriate method and timing of treatment for invasive plant species.
- Remove encroaching trees. Large old trees are important habitat features that should be
 protected where they occur in grassland areas, but young trees should be removed by
 cutting, or other mechanical means. Prescribed fire can also be used to remove
 encroachment, but it must be planned and conducted by a qualified professional and requires
 careful management of invasive plant species to prevent their spread.
- Avoid use of insecticides in, or near, important foraging areas for wildlife. Insecticide
 use near foraging habitat for animals that feed on insects (e.g., Lewis's woodpecker) should
 be avoided.

Plan Land Development Carefully

Where development is allowed near grassland ecosystems, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional¹⁰⁰.
- Plan, design and implement land development activities (including trails and recreation access) to minimize impacts to grassland ecosystems by addressing the following recommendations:
 - protect native grasses, microbiotic crusts, and other native vegetation;
 - protect large old trees, and snags;
 - protect soils, and other terrain features such as bedrock; and
 - restore native vegetation where it has been disturbed. Seed or plant native species from nurseries, or plant native species that have been rescued from other development sites. Ensure that any native plant material used is weed-free.
- Maintain native grassland ecosystems and their wildflowers by encouraging landowners and developers to maintain natural sites, and landscape with native species adapted to local conditions. Native plant gardening can help create wildlife habitat, and minimize the need to water or irrigate.
- Protect endangered, threatened, or vulnerable species or plant communities, and habitat features that were identified during the planning and inventory stages by addressing the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as large old trees and snags; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.
- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.
- Protect nesting and denning sites that were identified in the environmental impact assessment. Such features include dens, raptor nest or perch trees, owl roosts, woodpecker cavities, and bat roosts.

¹⁰⁰ See:

12 Broadleaf Woodlands

12.1 What are broadleaf woodland ecosystems?101

Broadleaf woodland ecosystems occurred on sites where conditions resulted in a broadleaf overstory in the climax stage of succession. Because these ecosystems are moister than surrounding areas, they have many similarities to riparian ecosystems, but are generally not found near standing or running water.

In the study area broadleaf woodland ecosystems included only aspen copse ecosystems. Aspen copse ecosystems occurred in broad, moist depressions in grassland areas. They were typically small ecosystems with trembling aspen overstories and shrubby understories dominated by common snowberry and roses. Soils were typically medium-textured. These sites were rich as the yearly input of leaf litter is quickly decomposed and mixed into the upper soil horizon by soil organisms.

Vegetation

9			
Trees	trembling aspen	**	Populus tremuloides
Shrubs			
	common snowberry	**	Symphoricarpos albus
	Nootka rose	**	Rosa nutkana
	saskatoon	*	Amelanchier alnifolia
	tall oregon-grape	*	Mahonia aquifolium
Grasses			
	blue wildrye	*	Elymus glaucus
Forbs			
star-flowered false Solomon's-seal		*	Maianthemum stellatum

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, ** abundant species.

¹⁰¹ Adapted from Iverson and Cadrin 2003.

12.2 Why are they important?102

Ecological attributes and socio-economic values of broadleaf woodland ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Rare¹⁰³ natural plant communities of broadleaf woodlands

Trembling aspen / snowberry / Kentucky bluegrass (R) (Populus tremuloides / Symphoricarpos albus / Poa pratensis)

Rare vertebrates of broadleaf woodlands:

Ferruginous Hawk (R, COSEWIC-SC) (Buteo regalis)

Western Screech-Owl (R, COSEWIC-E) (Megascops kennicottii ssp. macfarlanei)

Yellow-breasted Chat (R, COSEWIC-E) (Icteria virens)

Brewer's Sparrow (R) (Spizella breweri ssp. breweri)

Great Basin Spadefoot (B. COSEWIC-T) (Spea intermontana)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Lewis's Woodpecker (B, COSEWIC-SC) (Melanerpes lewis)

Townsend's Big-eared Bat (B) (Corynorhinus townsendii)

Western Harvest Mouse (B, COSEWIC-SC) (Reithrodontomys megalotis)

- Rarity: Broadleaf woodland native plant communities are listed as rare by the B.C. Conservation Data Centre (see above).
- High biodiversity: Broadleaf woodland ecosystems have diverse plant communities that support a rich assemblage of species. Deciduous litter fall results in an organically enriched upper layer of soil.
- Specialised habitats: Aspen copse ecosystems are structurally diverse, and provide cover, food, and nesting habitat for many species. Aspen trees are very important for cavity nesting birds and animals. Many species that feed in adjacent grasslands require aspen trees for nesting and denning.
- Social values: Broadleaf woodland ecosystems provide opportunities for education, wildlife
 viewing, cover from the heat and sun, walking and hiking, and aesthetic enjoyment. They
 provide water filtration, soil stability and can add to real estate values in adjacent areas and
 draw tourists into the area.
- **Fragility**: These ecosystems are sensitive to soil disturbances because of their moist soils.

12.3 Status

Broadleaf woodland ecosystems were scattered throughout the study area; they covered 3% of the study area (195 ha). All broadleaf woodland ecosystems are a high priority for conservation.

¹⁰² Adapted from Iverson and Cadrin 2003.

¹⁰³ Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of August 2002 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2002, are noted as endangered (E), threatened (T), or of special concern (SC). See Glossary for further discussion.

12.4 Management Recommendations¹⁰⁴

The following recommendations will aid in the site management of broadleaf woodland ecosystems.

Retain Natural Vegetated Buffers around Broadleaf Woodland Ecosystems

Wherever possible, natural vegetated buffers should be retained or established with native vegetation around each broadleaf woodland ecosystem to maintain ecological viability and prevent the introduction and spread of invasive weed species. Connectivity should be maintained with surrounding ecosystems. Historically, broadleaf woodland ecosystems likely occurred as small to medium-sized patch sizes with a high level of interconnectedness with grassland and other ecosystems. Many wildlife values associated with these ecosystems are reliant on their connections with other ecosystems.

Avoid Direct and Indirect Impacts

- Discourage human settlement or other development within or adjacent to broadleaf woodland ecosystems.
- Plan for controlled recreational access to some areas, and access restrictions (e.g., with fencing and railings) to sensitive areas in order to manage the effects of recreation and other human uses. Avoid road access wherever possible.
- Prevent disturbance or nesting of breeding areas. Avoid development activities from May through August.
- Avoid road access wherever possible.
- Control invasive species. Managing human and livestock access will help prevent the
 spread of invasive plants. Treat existing invasive species to maintain ecological integrity of
 the site. Herbicides and biological control agents are other possible treatments. The BC
 Ministry of Forests and Range or BC Ministry of Agriculture and Lands can be consulted to
 determine the appropriate method and timing of treatment. Plant native shrubs on disturbed
 sites to establish a healthy, weed-resistant natural plant community.
- Avoid use of insecticides in or near important foraging areas for wildlife. Insecticide
 use near foraging habitat for animals that feed on insects (e.g., Western Screech-Owl and
 Townsend's Big-eared Bat) should be avoided.

Plan Land Development Carefully

Where development is allowed near broadleaf woodland ecosystems, the following guidelines apply:

• Require an environmental impact assessment conducted by a qualified professional 105.

¹⁰⁴ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

- Plan, design and implement land development activities (including trails and recreation access) to minimise impacts to broadleaf woodland ecosystems by addressing the following recommendations:
 - protect mature and old trees and understory vegetation (especially shrubs);
 - protect live and dead trees with cavities;
 - protect standing dead and declining trees, downed trees and logs, and leaf litter;
 - protect the root systems of trees;
 - protect soil conditions and hydrologic regimes; and
 - restore native vegetation where it has been disturbed. Plant cuttings of shrubs, or plant native species from nurseries, or plant native species have been rescued from other development sites. Make sure any native plant material used is weed-free.
- Design roads carefully. Roads should be narrow and set back from the ecosystem to
 ensure that vegetation is maintained. Where roads encroach upon broadleaf woodland
 ecosystems, narrow the width of the road and avoid sidecasting material into the ecosystem.
- Design trails carefully. Ensure that trails do not affect the root systems of trees, and will not
 create soil erosion problems. Trails should be designed to discourage use by vehicular traffic
 (ATV's), horses, and mountain bikes. Fences may be necessary in some places to control
 access.
- Protect endangered, threatened, or vulnerable species or plant communities, and habitat features that were identified during the planning and inventory stages, by including the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as trees with cavities, large old trees, and snags, and limbs, leaf litter and soil; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree. Large diameter felled trees should be left on the ground.
- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.
- Protect nesting and denning sites that were identified in the environmental impact assessment. Such features include dens, raptor nest or perch trees, owl roosts, woodpecker cavities, and bat roosts.
- Maintain hydrologic regimes. Changes to surface and ground water flow can negatively impact broadleaf woodland ecosystems. Trails, roads, and housing developments must be designed to maintain hydrology of these ecosystems.

¹⁰⁵ See:

Incorporating SEI Information into Environmental Impact Assessments, page 34.

•	Ensure adequate sediment and erosion control measures are implemented.

13 Coniferous Woodlands

13.1 What are coniferous woodland ecosystems?106

Coniferous woodland ecosystems in the study area had open coniferous tree canopies. They

occurred on rocky knolls and shallow soils where limited moisture or shallow soil limited tree establishment. These ecosystems had scattered ponderosa pine and Douglas-fir trees, and saskatoon growing in rock fractures with patches of grasses and forbs in shallow soil pockets.

Coniferous woodland ecosystems were classified into five structural stages for this SEI. Structural stages are important to identify different habitat values and the quality of the site (Table 10). Generally, older structural stages are of higher conservation priority than younger structural

stages. Younger sites are important for buffers, and they provide recruitment for older structural stages.

Table 10. Structural stages of coniferous woodland ecosystems.

Code	Name	Definition
WD:3	Shrub/herb	Shrub cover 20% or greater, tree cover less than 10%
WD:4	Pole sapling	Trees are >10m tall and have 10% or greater cover, dense stands, generally 10-40 years old
WD:5	Young forest	Trees are >10m tall and have 10% or greater cover, dominated by young trees about 40-80 years old
WD:6	Mature forest	Trees are >10m tall and have 10% or greater cover, dominated by mature trees about 80-250 years old

¹⁰⁶ Adapted from Iverson and Cadrin 2003.

Vegetation

1 1 9 1 1 1 1 1 1		
Trees		
ponderosa pine	*	Pinus ponderosa
Douglas-fir	**	Pseudotsuga menziesii
Shrubs		
saskatoon	**	Amelanchier alnifolia
Grasses		
bluebunch wheatgrass	**	Pseudoroegneria spicata
rough fescue	**	Festuca campestris
Forbs		
arrowleaf balsamroot	**	Balsamorhiza sagittata
selaginella	*	Selaginella spp.

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, ** abundant species.

13.2 Why are they important?

Ecological attributes and socio-economic values of coniferous woodland ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Rare¹⁰⁷ natural plant communities of coniferous woodlands

Douglas-fir – ponderosa pine / bluebunch wheatgrass (B) (*Pseudotsuga menziesii - Pinus ponderosa / Pseudoroegneria spicata*)

Rare vertebrates of coniferous woodlands

Swainson's Hawk (R) (Buteo swainsoni)

Ferriginous Hawk (R, COSEWIC-SC) (Buteo regalis)

White-headed Woodpecker (R, COSEWIC-E) (Picoides albolarvatus)

Badger (R, COSEWIC-E) (Taxidea taxus)

Great Basin Spadefoot (B, COSEWIC-T) (Spea intermontana)

Painted Turtle (B) (Chrysemys picta)

Racer (B, COSEWIC-SC) (Coluber constrictor)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Western Skink (B, COSEWIC-SC) (Eumeces skiltonianus)

Lewis' Woodpecker (B, COSEWIC-SC) (Melanerpes lewis)

Flammulated Owl (B, COSEWIC-SC) (Otus flammeolus)

Townsend's Big-eared Bat (B) (Corynorhinus townsendii)

- Rarity: Coniferous woodland native plant communities have rare status (see above).
- High biodiversity: Coniferous woodland ecosystems are diverse and support a rich
 assemblage of species. The open nature of these forests provides good visibility from
 predators for ungulates, and provides habitat for many grassland species that do not tolerate
 closed forests. Coniferous woodland ecosystems on shallow soil sites with exposed bedrock
 often provide habitat for snakes.

¹⁰⁷ Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of June 2005 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2005, are noted as endangered (E), threatened (T), or of special concern (SC).

- **Specialised habitats**: Scattered large, old trees and cracks and crevices in ecosystems with exposed bedrock provide a range of habitat niches.
- Fragility: Coniferous woodland ecosystems commonly have shallow soils that are very sensitive to disturbance.
- Social values: Coniferous woodland ecosystems provide opportunities for education, wildlife
 viewing, landscape viewpoints, walking and hiking, and aesthetic enjoyment. They can add to
 real estate values in adjacent areas and draw tourists into the area.

13.3 Status

The types of coniferous woodland ecosystems found in the study area have a limited distribution in the dry interior valleys of southern British Columbia. Historically, these ecosystems likely occurred in areas with shallow soils in the study area. Most coniferous woodland ecosystems have been altered by disturbances such as logging, forest ingrowth, and weed invasion. Coniferous woodland ecosystems were common in the study area (13% of study area; 857 ha).

Old coniferous woodland ecosystems are included within the old forest category because of their extreme rarity.

Most coniferous woodland ecosystems were young forests (54%). Mature coniferous woodlands (30%) should be a higher priority for conservation.

13.4 Management Recommendations¹⁰⁸

The following recommendations will aid in the site management of coniferous woodland ecosystems.

Retain Natural Vegetated Buffers around Coniferous Woodland Ecosystems

Wherever possible, natural vegetated buffers should be retained or established with native vegetation around coniferous woodland ecosystems. Buffers help to reduce the spread and introduction of invasive weed species, and help to maintain ecological viability and connectivity to other ecosystems. It is also important to maintain corridors to further ensure connectivity to other ecosystems. Many of the wildlife values associated with coniferous woodland ecosystems are reliant on their connections with other ecosystems.

Avoid Direct and Indirect Impacts

- Discourage human settlement or other developments within or adjacent to coniferous woodland ecosystems.
- Manage access to minimize vehicular and livestock access. Where trails can be safely established, follow the appropriate recommendations listed below under "Plan Land Development Carefully".
- Control invasive species. Managing human and livestock access, and treating existing
 invasive species will help maintain the ecological integrity of coniferous woodland sites.

¹⁰⁸ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

Retaining a healthy natural plant community and avoiding soil disturbance will help prevent weed invasions. Herbicides and biological control agents are other possible treatments. The BC Ministry of Forests and Range or BC Ministry of Agriculture and Lands can be consulted to determine the appropriate method and timing of treatment for invasive plant species.

- **Prevent soil disturbances**. Coniferous woodlands typically have shallow soils that are sensitive to disturbance. Soil disturbance can allow invasive plants to establish and spread and can make it difficult for native plants to re-establish.
- Reduce ingrowth. Cut down and remove small ingrowth trees.

Plan Land Development Carefully

Where development is allowed in or near coniferous woodland ecosystems, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional 109.
- Design and implement land development activities (including trails and recreation access) to minimise impacts to coniferous woodland ecosystems by addressing the following recommendations:
 - protect mature and old trees, and native vegetation;
 - protect large diameter (>30cm) dead and declining trees;
 - protect the root systems of trees;
 - protect soils by avoiding activities that cause erosion or compaction; and
 - restore native vegetation where it has been disturbed. Seed or plant native species from nurseries, or plant native species that have been rescued from other development sites. Ensure that any native plant material used is weed-free.
- Design trails carefully. Ensure that trails do not affect the root systems of trees, and will not
 create soil erosion problems. Trails should be designed to discourage use by vehicles
 (ATV's), horses, and mountain bikes. Fences may be necessary in some places to prevent
 access. Trails should be closely monitored for noxious and invasive plants. If invasive plants
 are present, trails should be closed until the invasive plants have been treated and are under
 control to reduce spread.
- Protect endangered, threatened, or vulnerable species or plant communities, and habitat features that were identified during the planning and inventory stages by addressing the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as trees with cavities, large old trees, and snags; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.

Incorporating SEI Information into Environmental Impact Assessments, page 34.

¹⁰⁹ See:

- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.
- **Protect large old trees, and snags**. Old trees and snags provide critical nesting habitat for many species of birds and small mammals.
- Protect nesting and denning sites that were identified in the environmental impact assessment. Such features include dens, raptor nest or perch trees, owl roosts, woodpecker cavities, and bat roosts.
- Ensure adequate sediment and erosion control measures are implemented.

14 Sparsely Vegetated

14.1 What are sparsely vegetated ecosystems?

Sparsely vegetated ecosystems in the study area occurred on sites where rock or talus limited vegetation establishment. Vegetation cover was discontinuous, and was interspersed with bedrock or blocks of rock.

Sparsely vegetated ecosystems were subdivided into four subtypes: shrub, talus, cliff, and rock outcrop ecosystems; these are described below.

Shrub

In the study area, shrub ecosystems occurred on small rock outcrops with cracks and crevices in grassland areas. Soils were restricted to small pockets. Scattered shrubs grew in cracks and crevices.

Talus

Talus ecosystems occurred on steep slopes covered with angular rock fragments. They usually occurred below rock outcrops or cliffs. Vegetation included scattered trees, shrubs, and cliff ferns.

Cliff

In the study area, sparsely vegetated cliff ecosystems were steep, vertical cliffs. Cliffs had minimal vegetation that was restricted to cracks and crevices, narrow ledges and small soils pockets.

Rock Outcrops

Rock outcrop ecosystems occurred on areas of exposed rock that had very little soil development and sparse vegetation cover. Vegetation cover typically consisted of bunchgrasses, selaginella and scattered shrubs.

Vegetation

	Shrub	Talus	Cliff	Rock outcrop	
Trees					
ponderosa pine		*			Pinus ponderosa
Douglas-fir		*			Pseudotsuga menziesii
Shrubs					
saskatoon	*	*	*	*	Amelanchier alnifolia
choke cherry	*	*	*		Prunus virginiana
mock orange		**	*		Philadelphus lewisii
Grasses					
bluebunch wheatgrass	*	*	*	*	Pseudoroegneria spicata
Forbs					
arrowleaf balsamroot	*			*	Balsamorhiza sagittata
selaginella				***	Selaginella spp.
cliff fern		*	*		Woodsia spp.
shrubby penstemon	*	*			Penstemon fruticosus

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, *** abundant species.

14.2 Why are they important?

Ecological attributes and socio-economic values of sparsely vegetated ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Natural sparsely vegetated plant communities recommended for the red- or blue- list

Antelope-brush – selaginella (Purshia tridentata)¹¹⁰

Choke cherry – bluebunch wheatgrass (*Prunus virginiana – Pseudoroegneria spicata*)

Saskatoon – mock orange (Amelanchier alnifolia – Philadelphus lewisii)

Selaginella – bluebunch wheatgrass (Selaginella - Pseudoroegneria spicata)

Rare¹¹¹ vertebrates of sparsely vegetated ecosystems

Ferruginous Hawk (R, COSEWIC-SC) (Buteo regalis)

Peregrine Falcon (R, COSEWIC-SC) (Falco peregrinus ssp. anatum)

Prairie Falcon (R) (Falco mexicanus)

Pallid Bat (R, COSEWIC-T) (Antrozous pallidus)

Racer (B, COSEWIC-SC) (Coluber constrictor)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Western Skink (B, COSEWIC-SC) (Eumeces skiltonianus)

Canyon Wren (B) (Catherpes mexicanus)

Fringed Myotis (B, COSEWIC-SC) (Myotis thysanodes)

Western Small-footed Myotis (B) (Myotis ciliolabrum)

Spotted Bat (B, COSEWIC-SC) (Euderma maculatum)

Townsend's Big-eared Bat (B) (Corynorhinus townsendii)

- Rarity: Most sparsely vegetated natural plant communities have been recommended for rare status (see above).
- Specialised habitats: A variety of specialised habitats are found in sparsely vegetated
 ecosystems. A number of species, including many threatened- or endangered-species are
 dependant on these habitats. Deep crevices and some talus slopes are used for shelter and
 hibernacula for over-wintering snakes such as Western Rattlesnakes, Gopher Snakes, and
 Racers. Some shrub, rock outcrop and cliff ecosystems with deep crevices provide roosting or
 hibernacula sites for a variety of bat species. Isolated trees provide important roosting or
 nesting sites for Lewis' woodpeckers and raptors.
- Fragility: Sparsely vegetated sites are sensitive to disturbance. They can take very long periods of time to recover, or never if soil is removed or eroded.

¹¹⁰ Although Antelope-brush does not occur in the North Okanagan, this plant community is still considered to occur here. Some plant communities have a broad range of vegetation species and plant community names do not always reflect the dominant species at a particular site.

Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of June 2005 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2005, are noted as endangered (E), threatened (T), or of special concern (SC).

 Social values: Sparsely vegetated ecosystems often provide focal points in the landscape for scenic viewpoints, wildlife viewing, and aesthetic enjoyment. They can add to real estate values in adjacent areas, and can draw tourists into the area.

14.3 Status

Sparsely vegetated ecosystems covered 5% (323 ha) of the study area land base. In the study area, rock outcrops and shrub ecosystems were the most common ecosystem type (173 ha and 113 ha); cliffs and talus sites were rare (8 ha and 29 ha).

14.4 Management Recommendations¹¹²

The following recommendations will aid in the site management of sparsely vegetated ecosystems.

Retain Natural Vegetated Buffers around Sparsely Vegetated Ecosystems

Wherever possible, natural vegetated buffers should be retained or established with native vegetation around each sparsely vegetated ecosystem and connectivity should be maintained between sparsely vegetated ecosystems and adjacent habitats. Many of the species that use sparsely vegetated ecosystems are also reliant on other types of ecosystems.

Avoid Direct and Indirect Impacts

- Discourage human settlement and other land development within or adjacent to sparsely vegetated ecosystems.
- Manage access to minimise vehicular and livestock access on and near sparsely vegetated
 ecosystems. Vehicle traffic, including bicycles, causes mortality to wildlife species that rely
 on these ecosystems. Road access should be avoided and rock climbing should be carefully
 managed on cliffs. Do not develop trails on sparsely vegetated ecosystems. Trails can
 create erosion problems, disturb fragile vegetation, and spread or introduce invasive weed
 species.
- **Prevent disturbance of snake hibernacula**. If snake hibernacula are found, they should not be disturbed and should not be made known to the public unless they occur in an area where public use may disturb snakes. Use snake fences around higher density developments.
- Control invasive species. Managing human and livestock access, and treating existing
 invasive species will help maintain ecological integrity of the site. Invasive plants can be
 hand-pulled, and native species can be planted to help prevent the establishment of more
 invasive plants. Retention of a healthy natural plant community will also help prevent weed
 invasions. Sparsely vegetated ecosystems are very sensitive and it is important not to cause
 further disturbance when treating invasive plants. Herbicides and biological control agents
 are other possible treatments. The BC Ministry of Forests and Range or BC Ministry of
 Agriculture and Lands can be consulted to determine the appropriate method and timing of
 treatment for invasive plant species.

¹¹² Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

Prevent soil disturbances. Sparsely vegetated have sensitive pockets of shallow soils, and
they frequently occur on steep slopes. Soil disturbance can allow invasive plants to establish
or spread and can make it difficult or impossible for native plants to re-establish. Disturbance
of talus or bedrock may destabilize remaining rocks.

Plan Land Development Carefully

Where development is allowed in or near sparsely vegetated ecosystems, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional¹¹³.
- Plan, design and implement land development activities (including trails and recreation access) to minimise impacts to sparsely vegetated ecosystems by addressing the following recommendations:
 - protect talus that occurs at the base of rock outcroppings and protect the steep faces of rock outcrops and cliffs;
 - protect mature and old trees and all native vegetation;
 - protect large diameter (>30cm) standing dead and declining trees and downed logs;
 - protect soil conditions and hydrologic regimes; and
 - restore native vegetation where it has been disturbed. Seed or plant native species from nurseries, or plant native species that have been rescued from other development sites. Ensure that any native plant material used is weed-free.
- Protect endangered, threatened, or vulnerable species or plant communities, and habitat features that were identified during the planning and inventory stages by addressing the following recommendations:
 - avoid disturbance of rock debris;
 - do no permit rock climbing without determining which areas must be avoided to protect denning, nesting, and roosting habitats;
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as trees with cavities, large old trees, and snags; and,
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.
- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.
- Avoid roads near hibernacula. Determine locations of snake hibernacula prior to planning site layouts, including roads. Roads should not be located within 750m of a hibernaculum and barriers and underpasses or snake fences may be required to prevent snake mortality.

Incorporating SEI Information into Environmental Impact Assessments, page 34.

¹¹³ See:

- Protect nesting and denning sites that were identified in the environmental impact assessment. Such features include dens, hibernacula, raptor nest or perch trees, woodpecker cavities, and bat roosts.
- Ensure adequate sediment and erosion control measures are implemented.

15 Mature Forest

15.1 What are mature forest ecosystems?

Mature forest ecosystems were mapped where polygons included structural stage 6 forests¹¹⁴ (mature forest), except for mature riparian, broadleaf woodland, and coniferous woodland forests, which were included in the riparian, broadleaf woodland, and coniferous woodland categories respectively.

Historically, most forests had frequent surface fires that killed most small trees and allowed few trees into the overstory. Overstories were generally open, multi-aged, and had a largely single-layered canopy of mostly large, old trees. The understory of mature forests was open and dominated by grasses and shrubs. Frequent fire also limited the occurrence of dead wood; only scattered large snags and large, downed wood occurred.

The exclusion of fires has caused formerly open, park-like forests to infill with smaller trees (forest ingrowth). Mature forests occurred where there are mature trees and a few large old trees. These stands typically had a history of selection logging and had some forest ingrowth, but the mature and old trees they contained are structurally important for wildlife. Mature forest sites provide excellent buffers for old forests and have good potential for restoration to historical stand structure.

Coniferous mature forest ecosystems

Coniferous mature forests in the study area were dominated by ponderosa pine and Douglas-fir. These forests occurred on sites with a wide range of ecological conditions. Most sites had a Douglas-fir overstory, with scattered grasses, forbs, and shrubs in the understory.

Mixed mature forest ecosystems

In the study area, mixed mature forests had both Douglas-fir and broadleaf tree species, including trembling aspen and paper birch. These ecosystems occurred on moister sites than coniferous mature forest ecosystems and had shrubby understories with scattered grasses and forbs.

74

¹¹⁴ Refer to Volume 2 (Iverson and Uunila 2005) for details on structural stage 6.

Vegetation

	Coniferous	Mixed	
Trees			
ponderosa pine	**		Pinus ponderosa
Douglas-fir	**	**	Pseudotsuga menziesii
paper birch		**	Betula papyrifera
trembling aspen		**	Populus tremuloides
Shrubs			
common snowberry	**	***	Symphoricarpos albus
tall oregon-grape	**	**	Mahonia aquifolium
Nootka rose	*	**	Rosa nutkana
Douglas maple		**	Acer glabrum
Grasses			
bluebunch wheatgrass	**		Pseudoroegneria spicata
rough fescue	**		Festuca campestris
blue wildrye		*	Elymus glaucus
Forbs			
arrowleaf balsamroot	*		Balsamorhiza sagittata
heart-leaved arnica	*	**	Arnica cordifolia

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, ** abundant species.

15.2 Why are they important?

Ecological attributes and socio-economic values of mature forest ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

Rare¹¹⁵ vertebrates of mature forests

Swainson's Hawk (R) (Buteo swainsonii)

White-headed Woodpecker (R, COSEWIC-E)

Badger (R, COSEWIC-E) (Taxidea taxus)

Racer (B, COSEWIC-SC) (Coluber constrictor)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Great Blue Heron (B) (Ardea herodias)

Flammulated Owl (B, COSEWIC-SC) (Otus flammeolus)

Lewis's Woodpecker (B) (Melanerpes lewis)

Townsend's Big-eared Bat (B) (Corynorhinus townsendii)

- Future old forest ecosystems: The extent of old forest ecosystems was extremely limited.
 With proper restoration, mature forests can, over time, become old forest ecosystems.
 However, removal of forest ingrowth is required to develop old forest ecosystems.
- Biodiversity: Mature forest ecosystems have many important structural attributes, including some remaining large, old trees. They provide habitat for many species, and, where they occur, broadleaf trees are important for many cavity-nesting species.

¹¹⁵ Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of June 2005 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2005, are noted as endangered (E), threatened (T), or of special concern (SC).

- Landscape connectivity: Mature forests provide buffers, and connectivity between other ecosystems.
- Social values: Mature forests provide opportunities for education, recreation, wildlife viewing, and aesthetic enjoyment. The natural areas that mature forests provide can add to real estate values in adjacent areas. Mature forests provide opportunities for selective logging.

15.3 Status

Mature forest ecosystems covered 1.4% (94 ha) of the study area. Most mature forest ecosystems in the study area were ingrown and required thinning to restore them to high quality sites that could become old forests.

Coniferous mature forests were the most common type (93 ha); only 1 ha was mixed.

15.4 Management Recommendations¹¹⁶

Avoid Direct and Indirect Impacts

- **Discourage human settlement or other developments** within or adjacent to mature forest ecosystems.
- Manage access to minimize vehicular and livestock access. Where trails can be safely
 established, the appropriate recommendations listed below under "Plan Land Development
 Carefully" should be followed.
- Restore and maintain ecological structures and functions. Restoration requires
 understanding of historical disturbance regimes (particularly fire), and of the structure of
 these forests prior to fire exclusion and logging. A qualified professional should develop a
 detailed restoration plan.

Restoration should include the retention of larger trees, plus thinning and removal of other trees to restore forest densities to the low tree densities of the late 1800's. Following thinning, initial prescribed burns should be conducted to consume unnaturally heavy fuels. Prescribed burning should be planned and conducted by qualified professionals.

Prescribed fire may be too dangerous to conduct on small, private lots. Landowners can reduce the risk of wildfire and maintain some of the ecological functioning of mature forest ecosystems on their land by raking and removing fuels from beneath trees, and by cutting and removing small trees.

- Prevent disturbance of nesting sites and breeding areas (e.g., cavities in large trees).
- Protect large old trees, and snags. Old trees and snags provide critical nesting habitat for many species of birds and den sites for mammals.
- Control invasive species. Managing human and livestock access, and treating existing
 invasive species (e.g., cheatgrass, knapweed, sulphur cinquefoil) will help maintain the

76

¹¹⁶ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

ecological integrity of old forest sites. Retention or restoration of a healthy natural plant community will also help prevent weed invasions. Herbicides and biological control agents are other possible treatments. The BC Ministry of Forests and Range or BC Ministry of Agriculture and Lands can be consulted to determine the appropriate method and timing of treatment for invasive plant species.

Avoid use of insecticides in, or near, important foraging areas for wildlife. Insecticide
use near foraging habitat for animals that feed on insects (e.g., Flammulated Owl and Lewis's
Woodpecker) should be avoided.

Plan Land Development Carefully

Where development is allowed in mature forest ecosystems, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional 117.
- Design and implement land development activities (including trails and recreation access) to minimise impacts to the mature forest ecosystems by addressing the following recommendations:
 - protect large, old trees, and understory vegetation;
 - locate the development away from existing large, old trees and snags; and
 - restore native vegetation where it has been disturbed. Seed in or plant native species
 from nurseries or transplant native species that have been rescued from other
 development sites. Ensure that any native plant material used is weed-free.
- Design trails carefully. Ensure that trails do not affect the root systems of trees, and will not
 create soil erosion problems. Trails should be designed to discourage use by vehicular traffic
 (ATV's), horses, and mountain bikes. Fences may be necessary in some places to prevent
 access. Trails should be closely monitored for noxious and invasive plants. If invasive plants
 are present, trails should be closed until the invasive plants have been treated and are under
 control to prevent spread.
- Protect endangered, threatened, or vulnerable species and habitat features that were identified during the planning and inventory stages by addressing the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as large old trees and snags; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.
- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.

Incorporating SEI Information into Environmental Impact Assessments, page 34.

¹¹⁷ See:

 Protect nesting and denning sites that were identified in the environmental impact assessment. Such features include dens, raptor nest or perch trees, owl roosts, woodpecker cavities, and bat roosts.

16 Disturbed Grasslands

16.1 What are disturbed grassland ecosystems?

Disturbed grasslands, once intact grasslands, had a mixture of native bunchgrasses and forbs, and 20-50% invasive plant species including cheatgrass and other invasive annual bromes, diffuse knapweed (*Centaurea diffusa*), and sulphur cinquefoil (*Potentilla recta*). Grasslands now dominated by big sagebrush are also included as disturbed grasslands.

In the study area, some grassland ecosystems had been invaded by invasive plants that covered more than 50% of the plant community. These ecosystems would be extremely challenging to restore, were excluded from the disturbed grasslands category, and were considered not sensitive. They

do, however, still provide many important wildlife habitat values.

Vegetation

Granas		
Grasses		
bluebunch wheatgrass	*	Pseudoroegneria spicata
junegrass	*	Koeleria macrantha
Columbia needlegrass	**	Achnatherum nelsonii
Forbs		
arrowleaf balsamroot	*	Balsamorhiza sagittata
parsnip-flowered buckwheat	*	Eriogonum heracleoides
daisies or fleabanes	*	Erigeron spp.
silky lupine	*	Lupinus sericeus
Non-native Plants		
cheatgrass or Japanese brome	**	Bromus tectorum or B. japonicus
diffuse knapweed	*	Centaurea diffusa
sulphur cinquefoil	*	Potentilla recta

This table broadly shows what vegetation occurred in these ecosystems. Abundance of different species is indicated by: * uncommon species, ** common species, *** abundant species.

16.2 Why are they important?

Ecological attributes and socio-economic values of disturbed grassland ecosystems are listed below. Values common to most SEI ecosystems are discussed in Chapter 2.

- **Rarity**: Disturbed grasslands represent the best potential to recover part of the extent of rare grassland natural plant communities.
- **Biodiversity**: Disturbed grasslands provide important habitat for many species, including many red- and blue-listed species (see below).

 Landscape connectivity: Disturbed grasslands provide buffers, and connectivity between other ecosystems.

Rare¹¹⁸ vertebrates of disturbed grasslands

Swainson's Hawk (R) (Buteo swainsonii)

Ferruginous Hawk (R, COSEWIC-SC) (Buteo regalis)

Prairie Falcon (R) (Falco mexicanus)

Upland Sandpiper (R) (Bartramia longicauda)

Burrowing Owl (R, COSEWIC-E) (Athene cunicularia)

Grasshopper Sparrow (R) (Ammodramus savannarum)

Brewer's Sparrow (R) (Spizella breweri ssp. breweri)

Lark Sparrow (R) (Chondestes grammacus)

Preble's Shrew (R) (Sorex preblei)

Merriam's Shrew (R) (Sorex merriami)

Pallid Bat (R, COSEWIC-T) (Antrozous pallidus)

Badger (R, COSEWIC-E) (Taxidea taxus)

Great Basin Spadefoot (B, COSEWIC-T) (Spea intermontana)

Painted Turtle (B) (Chrysemys picta)

Racer (B, COSEWIC-SC) (Coluber constrictor)

Gopher Snake (B, COSEWIC-T) (Pituophis catenifer ssp. deserticola)

Western Rattlesnake (B, COSEWIC-T) (Crotalus oreganus)

Long-billed Curlew (B, COSEWIC-SC) (Numenius americanus)

Lewis's Woodpecker (B. COSEWIC-SC) (Melanerpes lewis)

Fringed Myotis (B, COSEWIC-SC) (Myotis thysanodes)

Western Small-footed Myotis (B) (Myotis ciliolabrum)

Great Basin Pocket Mouse (B) (Perognathus parvus)

Western Harvest Mouse (B, COSEWIC-SC) (Reithrodontomys megalotis)

16.3 Status

Grassland ecosystems cover only 0.8% of British Columbia's land area and many of these grasslands have been lost or disturbed 119. The SEI showed that disturbed grasslands covered 24% (1350 ha) of the study area. Although these sites had up to 50% non-native plants, they could provide a source of grassland ecosystems through restoration. In particular, disturbed grassland ecosystems that occur in association with other sensitive and important ecosystems are higher priorities for preservation and restoration.

16.4 Management Recommendations¹²⁰

Although 17% of the study area is covered by undisturbed grassland; disturbed grasslands covered a greater proportion. These disturbed grassland ecosystems need to be restored to replace invasive plants with native vegetation. Where disturbed grasslands occur in association with other sensitive ecosystems, they have a higher preservation value and should be a higher priority for

¹¹⁸ Provincially endangered or threatened (R-red-listed) or vulnerable (B-blue-listed) vertebrate species and natural plant communities as of June 2005 are noted. Nationally rare vertebrate species ranked by COSEWIC, as of May 2005, are noted as endangered (E), threatened (T), or of special concern (SC). ¹¹⁹ Grasslands Conservation Council of B.C. 2002

¹²⁰ Management recommendations have been adapted from McPhee et al. 2000 and Iverson and Cadrin 2003.

restoration. Disturbed grasslands can also form buffers, corridors, and provide wildlife habitat, but require a plan to control invasive plants.

Avoid Direct and Indirect Impacts

- Discourage human settlement or other land developments within or adjacent to disturbed grassland ecosystems that are required for wildlife habitats or are identified as environmentally sensitive areas (ESAs).
- Minimise vehicular access. Vehicles are very effective at spreading invasive plants.
 Ensure roads are weed-free.
- Carefully plan new trails on disturbed grassland ecosystems. Trails can create erosion
 problems, disturb fragile vegetation, and spread invasive weed species. All motorised
 vehicles should be restricted to existing roads. Mountain bikes should be restricted to
 existing trails where such trails are weed-free, sustainable, and are not subject to erosion;
 otherwise these trails should be closed. Trails with invasive plants (and no erosion problems)
 can be reopened once weed problems have been controlled.
- Prevent disturbance of nesting sites and breeding areas. Many grassland birds are ground-nesters.
- Manage livestock use. Livestock grazing needs to be carefully managed to ensure that
 ecological values associated with grassland ecosystems can be maintained and to avoid
 spreading invasive plant species. Careful monitoring should to be implemented to ensure
 that grazing levels and timing meet management objectives for the site. Grazing levels may
 need to be reduced to effectively restore these sites.
- Protect large old trees and snags. Scattered trees or snags are extremely important for wildlife in grassland areas. These trees can be isolated structures in grassland areas.
- Control invasive species. Managing human and livestock access and treating existing invasive plant species will help restore the ecological integrity of disturbed grassland ecosystems. Invasive plants can be sprayed or hand-pulled, and native species can be planted to help prevent the establishment of more invasive plants. Restoring a healthy natural plant community will also help prevent future weed invasions. Herbicides and biological control agents are other possible treatments. It is important that the right treatment method is used to ensure it is effective. The BC Ministry of Forests and Range or BC Ministry of Agriculture and Lands can be consulted to determine the appropriate method and timing of treatment for invasive plant species.
- Remove encroaching trees. Young trees should be removed by cutting. All large old trees
 (and some mature trees for recruitment) should be retained.
- Avoid use of insecticides in, or near, important foraging areas for wildlife. Insecticide
 use near foraging habitat for animals that feed on insects (e.g., Lewis's woodpecker) should
 be avoided.

Plan Land Development Carefully

Where development is allowed in or near disturbed grassland ecosystems, the following guidelines apply:

- Require an environmental impact assessment conducted by a qualified professional 121.
- Plan, design and implement land development activities (including trails and recreation access) to minimise impacts to disturbed grassland ecosystems by addressing the following recommendations:
 - protect native grasses, microbiotic crusts, and other native vegetation,
 - protect large, old trees;
 - protect soils and other terrain features such as bedrock;
 - do not create trails unless invasive plants have been controlled; and
 - restore native vegetation where it has been disturbed. Seed or plant native species from nurseries, or plant native species that have been rescued from other development sites.
 Ensure that any native plant material used is weed-free or contaminated with the same invasive plants present on site.
- Protect endangered, threatened, or vulnerable species, and habitat features that were identified during the planning and inventory stages by addressing the following recommendations:
 - avoid disturbance to sites where rare plants are growing and where rare natural plant communities occur;
 - maintain habitat structures such as large old trees and snags; and
 - where it is absolutely necessary to cut danger trees, cut them to a level where they are safe and retain the trunk rather than removing the whole tree.
- Prevent disturbance of nesting and breeding areas. Avoid development activities from May through August.
- Protect nesting and denning sites that were identified in the environmental impact assessment. Such features include dens, raptor nest or perch trees, owl or woodpecker cavities, and bat roosts.

Incorporating SEI Information into Environmental Impact Assessments, page 34.

¹²¹ See:

17 Future Directions

The Vernon Commonage SEI provides an essential planning tool for the study area, and an important source of information for similar ecosystems that occur elsewhere in the North Okanagan.

For the study area, this information should be used to develop a landscape level 'local ecosystems plan' and conservation strategy, which could tie into a broader 'ecosystem plan' for the North Okanagan including the protected areas on crown lands. Conservation priorities identified in the conservation analysis can provide the basis of a property acquisition strategy.

As development proceeds within the study area, this inventory should be used as the basis for more detailed information gathering (at a finer scale) for development of neighbourhood area plans and Environmental Impact Assessments.

This SEI should be used to provide specific input to a 'local ecosystems plan' for the Vernon Commonage and could be a component of the Parks and Recreation Master Plan. SEI should be extended to cover other important natural areas within the North Okanagan.

This SEI and the landscape level ecosystem plan for this area should be used to modify the City of Vernon's and the Regional District of North Okanagan's Official Community Plans, and to provide input into a Growth Management Strategy. Sensitive and Other Important Ecosystems should be designated as Development Permit Areas within the Official Community Plans. The SEI map and conservation analysis can be used to guide zoning designations within the study area.

Existing mapping can provide a baseline to monitor changes in sensitive and other important ecosystems in the study area. As new housing, agricultural, and land developments, disturbances, and ecological succession occur in the study area, they will change components of the sensitive ecosystems map. The mapping should be updated every ten years to reflect and measure such changes.

References

- B.C. Ministry of Environment, Lands, and Parks and B.C. Ministry of Forests. 1998. *Field Manual for Describing Terrestrial Ecosystems*. Land Management Handbook Number 25. Province of British Columbia, Victoria, B.C.
- Canadian Parks and Wilderness Society 1996. BC's grasslands facing extinction. Parks and Wilderness Quarterly 8:1-4. As quoted in Henwood 1998.
- Cannings, R.J. and E. Durance. 1998. Human use of natural resources in the South Okanagan and Lower Similkameen valleys *in* Smith, I.M., and G.G.E. Scudder, eds. Assessment of species diversity in the Montane Cordillera Ecozone. Burlington: Ecological Monitoring and Assessment Network, 1998.
- Chen, J., J.F. Franklin, and T.A. Spies. 1995. Growing season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications 5:74-86.
- Clarke, D., K. Knuever, K. Iverson, M. Sarell, and A. Haney. 2004. Balanced growth for the Bella Vista Goose Lake Range: a demonstration of landscape planning and urban growth in the North Okanagan. Report prepared for the Allan Brooks Nature Centre.
- Clarke, D., M. Martin, M. Sarell, and C. Siddle. 1993. Greater Vernon Natural Features Inventory. A report to Greater Vernon Parks and Recreation District.
- Demarchi, D. 1996. An Introduction to the Ecoregions of British Columbia, Draft. Ministry of Environment Lands, & Parks, Victoria, B.C.
- Environment Canada. 1999. *The Importance of Nature to Canadians*: Survey Highlights, see http://www.ec.gc.ca/nature/survey
- Findlay, B. and A. Hillyer. 1994. *Here Today, Here Tomorrow: Legal tools for the voluntary protection of private land in British Columbia*. Vancouver: West Coast Environmental Law Research Foundation.
- Fodor, E. V. 1999. Better, not Bigger. Gabriola Island. New Society Publishers.
- Government of Canada. 2003. Species at Risk Act, an Act respecting the protection of wildlife species at risk in Canada. Assented 12 December 2002. Came into force 5 June 2003.
- Grasslands Conservation Council of B.C. 2002. BC Grasslands Mapping Project: Year 3 Midterm Statistical Report. Available at http://www.bcgrasslands.org/showpage.asp?pageid=317
- Haney, A. and M. Sarell. 2005. Sensitive Ecosystems Inventory: Vernon Commonage, 2005. Volume 3: Wildlife Habitat Mapping. Unpub. report prepared for the Allan Brooks Nature Centre.
- Iverson, K. 2003. Sensitive Ecosystems Inventory: Bella Vista Goose Lake Range, 2002.

 Volume 1: Methods, Ecological Descriptions, Results and Management Recommendations.

 Unpub. report prepared for the Okanagan Indian Band and Allan Brooks Nature Centre.
- Iverson, K. and C. Cadrin. 2003. Sensitive Ecosystems Inventory: Central Okanagan, 2000 2001. Volume 1: Methodology, Ecological Descriptions, Results and Conservation Tools.

- Technical Report Series No. 399, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Iverson, K., and P. Uunila. 2005. Sensitive Ecosystems Inventory: Vernon Commonage. Volume 2: Terrestrial Ecosystem Mapping, Terrain Mapping, and Expanded Legend.
- MacKenzie, W. and A. Banner. 1999. Classification of wetlands and related ecosystems in British Columbia. Draft report. Province of British Columbia Ministry of Forests Research Program. Victoria, B.C. http://www.for.gov.bc.ca/prupert/wetlands/website/html/reports.htm
- McPhee, M., P. Ward, J. Kirkby, L. Wolfe, N. Page, K. Dunster, N.K. Dawe and I. Nykwist. 2000. Sensitive Ecosystems Inventory: East Vancouver Island and Gulf Islands, 1993 1997. Volume 2: Conservation Manual. Technical Report Series No. 345, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
- Meadows, D. H. Society's myths about urban growth. *In: Times Colonist*. May 27, 1999, Page A13. (based on Fodor, 1999. Better not Bigger).
- Ministry of Environment Lands and Parks. 1996. Stewardship Options for Private Landowners in British Columbia. Victoria, B.C.
- Pojar, J., K. Klinka, and D.V. Meidinger. 1987. Biogeoclimatic ecosystem classification in British Columbia. Forest Ecology and Management 22:119-154.
- Relyea, R.A. 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15(2): 618–627.
- Resources Inventory Committee (RIC). 1998. Standard for Terrestrial Ecosystem Mapping in British Columbia. Victoria, B.C. http://ilmbwww.gov.bc.ca/risc/pubs/teecolo/index.htm
- Saunders, D.A., R.J. Hobbs, and C.R. Margules. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5:18-32.
- Scudder, G.G.E. 1991. Biodiversity over Time. *In:* Our Living Legacy: Proceedings of a Symposium on Biological Diversity. Eds. M.A. Fenger, E.H. Miller, J.F. Johnson and E.J.R. Williams. Royal B.C. Museum, Victoria, B.C.
- Semlitsch, R. and J. Bodie. 2003. Biological Criteria for Buffer Zones around Wetlands and Riparian Habitats for Amphibians and Reptiles. Conservation Biology 17(5):1219-1228.
- U.S. National Parks Service. 1990. Economic Impacts of Protecting Rivers, Trails and Greenway Corridors: A Resource Book. San Francisco: U.S. National Park Service.
- Voller, J. 1998. Riparian areas and wetlands. In: Voller, J. and S. Harrison, eds. 1998. Conservation biology principles for forested landscapes. Ministry of Forests. UBC Press, Vancouver, B.C.
- Ward, P., G. Radcliffe, J. Kirkby, J. Illingworth and C. Cadrin. 1998. Sensitive Ecosystems Inventory: East Vancouver Island and Gulf Islands 1993-1997. Volume 1: Methodology, Ecological Descriptions and Results. Technical Report Series No. 320, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.

Appendix A: SEI Data

Spatial and non-spatial data for the Terrestrial Ecosystem Mapping (TEM) component are available for download at the former Ministry of Sustainable Resource Management's Terrestrial Ecosystem Mapping Data Warehouse at http://lrdw.ca/ under Region 3.

The following are available:

- project metadata
- Non-Spatial Polygon Attributes
- TEM Map Legend Files
- TEM report with expanded legend (Volume 2)122
- Wildlife Species Accounts
- Wildlife Ratings Tables
- Wildlife Report (Volume 3)123
- Arc/Info *.E00 Export Files includes two spatial coverages: ECI field sampling points and a ECP TEM polygon coverage

¹²² Iverson and Uunila 2005

¹²³ Haney and Sarell 2005

Appendix B: Sensitive Ecosystems (SEI) Units¹²⁴ and related Terrestrial Ecosystem Mapping (TEM) units.

Sensitive Ecosystems

SEI Unit	Code	TEM Unit	Code ¹²⁵	Subzone / Site Series
Wetland, marsh	WN:ms	Bulrush marsh	BM	IDFxh1/00
,		Baltic rush marsh-meadow	BR	IDFxh1 /00
		Common spikerush marsh	CS	IDFxh1 /00
		Cattail marsh	CT	IDFxh1 /00
Wetland, shallow open	WN:sw	Shallow open water	OW	IDFxh1 /00
water		Pond	PD	IDFxh1 /00
Riparian, gully	RI:gu	Trembling aspen – Snowberry – Kentucky bluegrass	ASg, ASgk, ASgw	IDFxh1 /00
	•	Douglas-fir – Ponderosa pine – Snowberry – Spirea	DSg, DSgw	IDFxh1 /07
		Hybrid white spruce – Douglas-fir – Douglas maple – Dogwood	SDg, SDgw	IDFxh1 /08
Riparian, fringe	RI:ff	Black cottonwood – Douglas-fir – Common snowberry – Red-osier dogwood riparian	CD, CDn	IDFxh1 /00
		Hybrid white spruce – Douglas-fir – Douglas maple – Dogwood	SD	IDFxh1 /08
Old Forest, coniferous	OF:co	Douglas-fir – Ponderosa pine – Bluebunch wheatgrass – Pinegrass	DW 7C, DWs 7C	IDFxh1 /03
		Douglas-fir – Ponderosa pine –Saskatoon – Mock orange	FOk7C, FOw7C	IDFxh1 /00
		Douglas-fir – Ponderosa pine – Bluebunch wheatgrass – Balsamroot	PB7C, PBrv7C, PBv7C	IDFxh1/02
		Antelope brush - Selaginella	SAvz7C	IDFxh1 /00
		Saskatoon – Mock orange talus	SOk7C, SOw7C	IDFxh1/00
Grassland, grassland	GR:gr	Idaho fescue – Bluebunch wheatgrass	FW, FW:\$sw, FWk, FWk\$sw, FWks, FWks\$wf, FWs, FWs\$wf	IDFxh1 /91
		Bluebunch wheatgrass – Balsamroot	WB, WB\$sw, WBf, WBrs, WBs	IDFxh1 /93
Grassland, shrubland	GR:sh	Prairie Rose – Idaho fescue	RF, RFk, RFw	IDFxh1/97
Broadleaf woodland, aspen copse	BW:ac	Trembling aspen – Snowberry – Kentucky bluegrass	AS, ASk, ASn, ASw, ASwx, ASx, ASy (structural stage 3-6)	IDFxh1 /00 PPxh1 /00
Coniferous Woodland	WD	Douglas-fir – Ponderosa pine – Bluebunch wheatgrass – Pinegrass	DW, DWc, DWcs, DWf, DWks, DWkv, DWrs, DWs, DWv (structural stage 3-6)	IDFxh1 /03
		Douglas-fir – Ponderosa pine –Saskatoon – Mock orange	FOk, FOw (structural stage 3-6)	IDFxh1 /00
		Douglas-fir – Ponderosa pine – Bluebunch wheatgrass – Balsamroot	PB, PBkv, PBrv, PBs, PBv (structural stage 3-6)	IDFxh1 /02
Sparsely Vegetated, rock outcrop	SV:ro	Selaginella – Bluebunch wheatgrass rocky bluff	SB, SBk, SBr, SBw (no seral association)	IDFxh1 /00
Sparsely Vegetated,	SV:sh	Choke cherry – Bluebunch wheatgrass rocky bluff	CWk, CWr, CWw, CWz	IDFxh1/00

¹²⁴ See page 4 for SEI unit descriptions.

¹²⁵ All structural stages and stand composition modifiers are included unless otherwise noted. Structural stages are indicated by a number (e.g. '7'). Structural stage stand composition modifiers are indicated by a capital letter after the number (e.g., 'C' in '7C'). See Volume 2 (Iverson and Uunila 2005) for descriptions of site modifiers, structural stages, seral associations, and TEM units.

SEI Unit	Code	TEM Unit	Code ¹²⁵	Subzone / Site Series
shrub		Antelope brush - Selaginella	SAkv, SAq, SAqv, SArv, SAvw, SAvz (structural stage 3-6)	IDFxh1 /00
Sparsely Vegetated, talus	SV:ta	Saskatoon – Mock orange talus	SOk, SOw (structural stage 3-6)	IDFxh1 /00
Sparsely Vegetated, cliff	SV:cl	Cliff	CLbz, CLq, CLz	IDFxh1 /00

Other Important Ecosystems

SEI Unit	Code	TEM Unit	Code ¹²⁶	Subzone / Site Series
Mature Forest, coniferous	MF:co	Douglas-fir – Ponderosa pine – Pinegrass	DP6C, DPk6C	IDFxh1 /01
		Douglas-fir – Ponderosa pine – Snowberry – Spirea	DS6C, DSf6C, DSk6C	IDFxh1 /07
		Douglas-fir – Ponderosa pine – Snowbrush –	SP 6C, SPc6C, SPk6C,	IDFxh1 /04
		Pinegrass	SPks6C, SPs6C	
Mature Forest, mixed	MF:mx	Douglas-fir – Ponderosa pine – Snowberry – Spirea	DS 6M	IDFxh1 /07
Disturbed Grassland	DG	Idaho fescue – Bluebunch wheatgrass	FW\$fc, FW\$nc, FW\$wk, FW\$sk, FWf\$wk, FWk\$fc, FWk\$nc, FWk\$wk, FWks\$fc, FWks\$nc, FWks\$wk, FWs\$fc, FWs\$nc, FWs\$wk	IDFxh1 /91
		Bluebunch wheatgrass – Balsamroot	WB\$wk, WBf\$wk, WBkv\$wk, WBs\$wk	IDFxh1 /93

¹²⁶ All structural stages are included unless otherwise noted.

Appendix C. Known and potential threatened and endangered vertebrate animals in the study area.

Common Name	Scientific Name	Occurrence in Study Area	Prov. Status	COSEWIC Status
Amphibians				
Tiger Salamander	Ambystoma tigrinum	unknown	Red	Endangered
Great Basin Spadefoot	Spea intermontana	northern portion, likely throughout	Blue	Threatened
Western Toad	Bufo boreus	unknown but likely	-	Special Concern
Reptiles				
Painted Turtle	Chrysemis picta	throughout	Blue	-
Western Skink	Eumeces skiltonianus	unknown but possible	Blue	Special Concern
Western Rattlesnake	Crotalus oreganus	northern portion, likely throughout	Blue	Threatened
Gopher Snake	Pituophis catenifer	northern portion, likely throughout	Blue	Threatened
Racer	Coluber contrictor	northern portion, likely throughout	Blue	Special Concern
Rubber Boa	Charina bottae	throughout	-	Special Concern
Birds				
Great Blue Heron	Ardea herodias ssp. herodias	unknown but possible	Blue	-
California Gull	Larus californicus	known from one location	Blue	-
American Avocet	Recurvirostre americana	unknown but likely	Red	-
Long-billed Curlew	Numenius americanus	unknown but possible	Blue	Special Concern
Upland Sandpiper	Bartramia longicauda	unknown but possible	Red	-
	-	known from northern portion, likely		
Swainson's Hawk	Buteo swainsoni	throughout	Red	-
Ferruginous Hawk	Buteo regalis Megascops kennicotti ssp.	unknown but possible	Red	Special Concern
Western Screech-owl	macfarlanei	historically known (Ok Landing)	Red	Endangered
Flammulated Owl	Otus flammeolus	unknown but likely	Blue	Special Concern
Short-eared Owl	Asio flammeus	unknown but likely	Blue	Special Concern
Lewis' Woodpecker	Melanerpes lewis	unknown but likely unknown but possible (known from	Blue	Special Concern
Canyon Wren	Catherpes mexicanus	Cousin's Bay)	Blue	-
White-throated Swift	Aeronautes saxatalis	northern portion	Blue	-
Yellow-breasted Chat	Icteria virens	known from one location	Red	Endangered
Brewer's Sparrow	Spizella breweri breweri	unknown but possible	Red	-
Grasshopper Sparrow	Ammodramus savannarum	known from one location	Red	-
Lark Sparrow	Chondestes grammacus	known from one location	Red	-
Mammals				
Merriam's Shrew	Sorex merriami	unknown but possible	Red	-
Preble's Shrew	Sorex prebeii	unknown but possible unknown but likely (known from	Red	-
Townsend's Big-eared Bat	Corynorhinus townsendii	the Bella Vista)	Blue	-
Spotted Bat	Euderma maculatum	known from one location	Blue	Special Concern
Pallid Bat	Antrozous pallidus	unknown but possible	Red	Threatened
Fringed Myotis	Myotis thysanodes	unknown (but known Ok Landing)	Blue	Special Concern

Common Name	Scientific Name	Occurrence in Study Area	Prov. Status	COSEWIC Status
Western Small-footed				
Myotis	Myostis ciliolabrum	unknown but likely	Blue	-
Western Red Bat	Lasiurus blossevillii	unknown	Red	-
		unknown but likely (known from		
Western Harvest Mouse	Reinthrodontomys megalotis	the Bella Vista)	Blue	Special Concern
Great Basin Pocket Mouse	Perognathus parvus	unknown but likely	Blue	-
Nuttall's Cottontail	Sylvilagus nuttallii ssp. nuttallii	unknown	Blue	Special Concern
	, ,	known from northern portion, likely		•
Badger	Taxidea taxus	throughout	Red	Endangered