Search Results

1 results returned.
To copy the URL of a document, Right Click on the document title, select "Copy Shortcut/Copy Link", then paste as needed. Only documents available to the public have this feature enabled.
Title Sort descending Sort ascending Primary
Author Sort ascending Sort descending
Date Sort ascending Sort descending
Abstract / Details
View
Hard
copy
Can the important microbial diversity and nutrient cycling characteristics of old growth Douglas fir forests be maintained in managed second growth forests? Winder, Richard S.
2007
A
D

22K
Abstract: Background: Biodiversity emerges as the result of the many interactive factors that create niches for speciation. In forest ecosystems, drivers of biodiversity can include climate (Gaston 2000), fire regimes (Nasi et al. 2002), predation (Heath and Alfaro 1990), opportunities for long-term (e.g., mycorrhizal) symbioses (van der Heijden et al. 1999), parasitism and disease (Castello et al. 1995; Reynolds et al. 2003), and the intensity of nutrient utilization and competition (Loreau 1998). In old growth forests, the last factor is especially related to the amount of woody debris in the forest ecosystem. Logs, stumps, and other woody debris provide spatial niches for various organisms, but they also have important implications as the organic substrate for decomposition processes. These processes sustain many species of edaphic microbes and contribute to plant nutrition. Decomposers and other nutrient-cycling bacteria contribute the majority of species comprising biodiversity in any given forest ecosystem; in some cases the number of bacterial species can approach 10,000 species per gram of soil (see e.g. Chatzinotas, 1998). These microbes influence the complexity of niches for the other biotic components of a forest ecosystem. Understory plants, trees, mycorrhizal networks, and the 'food web? associated with them rely on the nutrient services provided by microbes in forest soils, and nutrient availability is, to a large extent, regulated by microbial activity (Schimel and Bennet, 2004). The diversity of soil microbes in turn is impacted by the complexity of the other biotic components. Can woody debris in younger forest stands be managed to sustain the key microbial communities in old growth soils? Does this in turn have a positive implication for protecting biodiversity? In the long term, this project aims to provide some answers for these questions. A major difference between old growth forests and managed second growth forests is that the managed forests have less woody debris and forest floor organic material. This structural disparity is especially a concern as timber rotation ages have been reduced from 100 to 50 years (Wells & Trofymow, 1997; Trofymow et al. 2003). In the context of emulating old growth, there are two aspects of nutrient services to consider: 1) Are the necessary microbial communities maintained, and 2) How are the complex niches of other important microbe communities affected? In the first case, an example of an essential microbial community is the group of bacterial species involved in nitrogen cycling. Sources of nitrogen necessary for timber growth are obtained through microbial decomposition of organic material or microbial fixation of atmospheric di-nitrogen. However, nitrogen availability is limited in most forest soil ecosystems (Dawson, 1992) as is our understanding of microbial community interactions resulting in nitrogen fluxes in these systems (Bornmann et al, 1993). Understanding the dynamics of N?fixing and nitrogen-cycling microbe communities in forest systems, and how forestry-related activities may influence them, is important in evaluating forestry management practices. In the second case, methane-oxidizing bacteria are an important microbial community that can be disrupted by nutrient imbalances and N availability, potentially limiting the function of the forest ecosystem as a methane sink (Steudler et al., 1989). One obvious value of biodiversity is in maintaining these types of essential ecosystem services, but biodiversity is often a spectrum of choices relating to habitat diversity and niche complexity. Deliverables and impacts from this study will provide a better understanding of practices needed to emulate N-cycling of old growth, maintain biodiversity, and sustain ecosystem services. The proposed project: We propose to profile the soil microbial nitrogen-cycling and methane oxidizing communities at Shawnigan Lake Research Forest (LTRI014), as well as in old-growth forest sit ...
 
Winder, Richard S.. 2007. Can the important microbial diversity and nutrient cycling characteristics of old growth Douglas fir forests be maintained in managed second growth forests?. Forest Investment Account (FIA) - Forest Science Program. Forest Investment Account Report. FIA2007MR331
 
Topic: FLNRORD Research Program
Keywords: Forest, Investment, Account, (FIA), Pseudotsuga, Menziesii, British, Columbia
ISSN:  Scientific Name: 
ISBN:  English Name: 
Other Identifier: 
 
To copy the URL of a document, Right Click on the document title, select "Copy Shortcut/Copy Link", then paste as needed. Only documents available to the public have this feature enabled.

EIRS Search Options

Useful Contacts