P/FR/SK/55
DE LEEUW, A. D.
YAKOUN RIVER STEELHEAD:
SOME ASPECTS OF THEIR LIFE
CPPC C. 1 mm SMITHERS

YAKOUN RIVER STEELHEAD SOME ASPECTS OF THEIR LIFE HISTORY, POPULATION SIZE AND SPORT FISHERY.

$$
1982-83
$$

by
 A.D. de LEEUW

BRITISH COLUMBIA MINISTRY OF ENVIRONMENT AND PARXS

Fish and Wildlife Branch

Smithers, B.C.

Skeena Fisheries Report \#SK-55

January, 1987
ABSTRACT ii
INTRODUCTION 1
DESCRIPTION OF STUDY AREA AND FISHERY 2
METHODS 4
RESULTS 5
Spatial and Temporal Distribution 6
Age and Size 9
Population Estimation 12
DISCUSSION 12
SUMMARY 14
ACKNOWLEDGEMENTS 15
REFERENCES 16
APPENDICES 17
de Leeuw, A.D. 1986. Yakoun River steelhead, some aspects of their life history, population size and sport fishery, 1982-83.

During the 1982-83 winter season, a steelhead tagging study was undertaken on the Yakoun River, Queen Charlotte Islands. Three hundred and forty-nine steelhead were angled by study participants from October 1982 to April 1983. Of these, 17 were killed, 29 were released untagged and 303 were successfully tagged and released. Of the latter, 32 were recaptured once, and 5 were recaptured twice. The greatest portion of the catch was taken in the upper river approximately 20 to 40 km . upstream of tidal water during November, December and January. The average number of days between date of original and recapture was 27.9 and ranged from 1 to 122 days. The average distance migrated was 4.3 km . and ranged from 0 to 40.8 km . The two age classes that dominated were 3.3 (38.1\%) and 4.3 (33.1\%) followed by 2.3 (7.8\%), 4.2 (5.7\%), $4.1 S 1$ (4.6%) and $3.1 S 1$ (2.8\%). The remaining 7 age classes accounted for 8%. Repeat spawners comprised 12.1% of the total sample. Female steelhead were slightly more abundant (62\%) than males, the former averaged 76.8 cm fork length (range 58.6 - 91) while the latter averaged 78.8 cm (range 59
-96.5). The steelhead population was calculated using multiple sample techniques and estimates were 1487, 1532, and 1637 fish. Wide confidence limits (1091 to 2368) were the result of low repeat capture rate. The sports fishery and results are discussed relative to a similar study undertaken the previous season.

Of all the steelhead streams on the Queen Charlotte Islands, undoubtedly the most popular and intensely fished is the Yakoun River on Graham Island. In order to gain a better understanding of steelhead in this river, the Fish and Wildlife Branch sponsored a steelhead tagging study by the Port Clements Rod and Gun Club during the winter of 1981-82. The study was repeated the following winter season.

The program objectives during both study years were:

1. To describe steelhead run timing and movement;
2. To describe life history characteristics;
3. To estimate population size.

With a drainage area of approximately $477 \mathrm{~km}^{2}$ the Yakoun is the largest stream on the Queen Charlotte Islands. The river flows north out of Yakoun Lake for approximately 60 km into Masset Inlet near Port Clements (Fig. 1). As is typical of many northern Queen Charlotte Island drainages, run-off tends to be coloured or "tea-stained" as a result of rain-saturated bogs and spruce-cedar-hemlock forests. Since the elevation of Yakoun Lake is only 100 m , the river's low gradient is characterized by shallow riffles interspersed with long runs and slow pools.

Like most coastal streams, the Yakoun River is subject to extremes in discharge, with low flows occurring during the July-September period and peaks in discharge generally taking place in the late fall and winter. Some extreme low flows can also occur in the winter, generally associated with freezing temperatures. Recorded maximum and minimum instantaneous discharges were $378.7 \mathrm{~m}^{3} / \mathrm{s}$ and $.47 \mathrm{~m}^{3} / \mathrm{s}$ respectively while the average is $34.7 \mathrm{~m}^{3} / \mathrm{s}$ (Water Survey of Canada, 1977). Temperatures range from $22.2^{\circ} \mathrm{C}$ in summer to near zero during the winter with a yearly average of $8.04^{\circ} \mathrm{C}$ (Environment Canada, 1985). Specific conductivity has ranged from 33 to 50 umho/cm while pH was generally between 6.4 and 7.0.

The Yakoun has numerous tributaries, some of which are important contributors to salmon and trout production. Approximately 30% of the drainage has been logged, and forest roads are the principal access routes to the numerous angling spots along the river.

The Yakoun is accessible to anadromous salmonids throughout its length. In addition to steelhead (Salmo gairdneri), the following species are also present: sockeye salmon (Oncorhynchus nerka), coho salmon (O. kisutch), chum salmon (O. keta), pink salmon (O. gorbuscha), chinook salmon (O. tshawytscha), Dolly Varden char (Salvelinus malma), cutthroat trout (Salmo clarki), prickly sculpin (Cottus asper), threespine stickleback (Gasterosteus aculeatus) and lamprey (Lampetra sp). Estimated annual salmon escapements are recorded in Brown, et al. 1979.

The winter steelhead fishery on the Yakoun takes place primarily in the middle reaches and lasts from October to late April. The upper 13 km are closed to all angling from October 1 to April 30 to protect spawning steelhead. Questionnaire-estimated angling effort, although variable, has averaged 1,636 angler days per year, with a low of 997 in the 1979-71 season, to a high of 2,907 angler days in the 1983-84 season (Table 1). This recent increase in angler activity is perhaps associated with the tagging study. The estimated number of anglers actually fishing during the period of record has remained fairly stable averaging 302 anglers, while the number of steelhead released has
increased (Table 1). Success rate is about. 86 fish per angler day, only slightly better than the Charlottes as a whole.

Fig. 1 Yakoun River Study Area and Zone Location

Table 1. Yakoun River steelhead harvest analysis ${ }^{1}$, 1970-71 to 1985-86

Season	Days Fished	No. of Anglers	Kept	Released	$\begin{gathered} \text { Kept / } \\ \text { Day } \\ \hline \end{gathered}$	$\begin{gathered} \text { Catch/ } \\ \text { Day } \\ \hline \end{gathered}$	Charlottes/ Catch/Day
1970-71	997	238	523	482	. 52	1.01	. 36
1971-72	1431	293	888	616	. 62	1.05	. 52
1972-73	2122	324	884	929	. 42	. 85	. 31
1973-74	1664	307	633	398	. 38	. 62	. 33
1974-75	1624	269	553	316	. 34	. 54	. 27
1975-76	1997	351	666	341	. 33	. 50	. 47
1976-77	1528	307	287	229	. 19	. 34	. 37
1977-78	1519	246	356	304	. 23	. 43	. 48
1978-79	1477	314	400	254	. 27	. 44	. 41
1979-80	1603	344	422	526	. 26	. 50	. 48
1980-81	1346	317	369	569	. 27	. 70	. 79
1981-82	1902	332	384	1279	. 21	. 99	. 93
1982-83	2330	341	480	2567	. 21	1.31	1.23
1983-84	2907	367	576	1901	. 20	. 87	. 57
1984-85	2902	458	630	3637	. 22	1.45	1.32
1985-86	$\underline{2167}$	300	431	3936	. 20	1.99	1.65
Mean	1636	302	531	1143	. 32	. 86	. 66

${ }^{1}$ Steelhead Harvest Analysis, B.C. Fish and Wildlife Branch annual reports

METHODS

Like the previous study (de Leeuw and Whately, 1983), the river was again partitioned into six zones, as follows: (Fig. 1).

Zone $1(8.5 \mathrm{~km})$ - mouth of Yakoun River to Canoe Creek
Zone 2 (11.4 km) - Canoe Creek to Log Creek
Zone $3(10.1 \mathrm{~km})$ - Log Creek to Branch 40 and Branch 40A Junction
Zone $4(6.4 \mathrm{~km})$ - Branch 40 Junction to Gold Creek
Zone 5 (8.4 km) - Gold Creek to Ghost Creek
Zone $6(13.3 \mathrm{~km})$ - Ghost Creek to Yakoun Lake

Adult steelhead were angled and tagged with orange, numbered anchor (spaghetti) tags. Weights were generally estimated while fork lengths were measured. Sex, date of capture, tag number and colour as well as zone of capture were noted. After the removal of a few scales, fish were released at the capture site.

Scales were viewed using a dissecting microscope, and the best two cleaned and mounted on gummed cards. Impressions of the scales were made on acetate cards by applying heat (110 to $120^{\circ} \mathrm{C}$) and pressure (300 lbs/in ${ }^{2}$) for 3.5 minutes. A Leitz Prado projector was then used to examine each scale for freshwater and ocean age determination (Narver and Withler, 1974).

Population size was determined using the Schnabel, Schumacher and Schnabel-Chapman adjusted multiple census techniques (Ricker, 1970). The formulae were:

Schnabel: $N=\frac{\sum \mathrm{Ct} \mathrm{Mt}}{\mathrm{R}}$

Schumacher: $\frac{1}{N}=\sum_{\sum(\mathrm{Mt} \mathrm{Rt})}^{\left(\mathrm{Ct} \mathrm{M} \mathrm{M}^{2} \mathrm{t}\right)}$
Schnabel, Chapman revised: $N=\frac{\sum(\mathrm{Ct} \mathrm{Mt})}{\mathrm{R}-1}$
Where: t = 5-day time period
Ct = total catch during time t
Mt = total fish tagged and released during time t
$\mathrm{M} \quad=$ sum of Mt
Rt = total recapture during time t
$R \quad=$ sum of $R t$

RESULTS

Three hundred and forty-nine steelhead were angled in the Yakoun River by study participants from October, 1982 to April, 1983. Of these, 17 were killed (one a tagged fish), 29 were released untagged, and the remaining 303 were successfully tagged and released (Appendix I). Of the latter, 32 (10.6\%) were recaptured once, and 5 (1.7\%) were captured a second time. One fish recaptured in this study period was originally tagged the previous season (Appendix II).

SPATIAL AND TEMPORAL DISTRIBUTION OF STEELHEAD CATCH

Over half of the steelhead were taken in Zone 5 (Table 2), with the majority of the total catch occurring during the months of November, December and January (Table 3). Sex ratio favoured females (215) over males (134) or 1.6 to 1 . Females in fact dominated the catch in every 10 -day catch period (Table 3).

Of the 32 fish recaptured once, 26 (81%) were caught in the zone of original capture. Two had migrated downstream from Zone 5 to the inter tidal area or Zone 1, while 3 had migrated upstream (Table 4). Zone of recapture was not recorded for 1 fish. The distance migrated between captures ranged from 0 (26) fish to 40.8 km (2 fish). The number of days between original and first recapture ranged from 1 to 122 days, and averaged 27.9 days (Table 4).

Only 5 fish were recaptured twice, their estimated migration distance between first and third capture was 13 km and included one fish which had migrated 40.8 km downstream after spawning, and one fish which had migrated upstream 11 km . Two other fish did not migrate out of the zone of original capture, while the recapture location was not recorded for 1 fish.

The maximum number of days between captures within this winter season was a fish originally tagged on November 27, 1982 and recaptured a second time 40.8 km downstream 169 days later. One fish was tagged on January 30, 1982 and recaptured March 3, 1983.

Table 2. Yakoun River steelhead catch during the $1982-83$ season by zone

Zone	Zone Length	Catch
		8.5 (tidal)
2	11.4	0
3	10.1	7
4	6.4	34
5	8.8	37
Not recorded	-	183
		23
Total	58.5	349

Table 3. Number of steelhead captured per 10-day interval during the 1982-83 tagging study on the Yakoun River.

Date	Males	Females	Total
10/1-10	0	0	0
10/11-20	0	0	0
10/21-30	4	7	11
11/1-10	8	8	16
11/11-20	10	29	48
11/21-30	9	21	30
12/1-10	20	28	48
12/11-20	13	22	35
12/21-30	7	8	15
01/1-10	5	13	18
01/11-20	15	20	35
01/21-30	15	22	38
02/1-10	1	7	8
02/11-20	4	4	8
02/21-30	0	7	7
03/1-10	13	19	32
03/11-20	0	0	0
03/21-30	0	0	0
04/1-10	1	0	1
Total	134	215	349

Table 4. Movement and residency of recaptured steelhead in the Yakoun River, 1982-83.

$$
\begin{aligned}
& \text { TOTAL FISH }=32 \mathrm{X}= \begin{array}{l}
4.3 \\
\text { TOTAL FISH }
\end{array}=5 \overline{\mathrm{X}}=13.0 \quad 72.3 \\
&(77.3)
\end{aligned}
$$

* Fish killed
** This fish captured 1 year after first capture, not included in average

AGE AND SIZE

Scales were interpreted for 323 steelhead (Table 5). In 42 of these, the fresh water zone was resorbed. Among the 13 age groups identified, the two most common were three years of fresh water followed by three years of ocean growth (3.3) and 4.3 which accounted for 38.1% and 33.1% respectively. The next most common ages were 3.2 , 4.2 and $4.1 S 1$, at 7.8%, 5.7%, and 4.6% respectively. The remaining 8 age groups accounted for less than 3\% each (Table 5).

Three and four years of fresh water growth accounted for 53.4% and 45.9% respectively of the total number of readable scales (Table 6).

The majority (80.6%) of Yakoun River steelhead had spent 3 years in the ocean prior to first spawning (Table 7). Of these 156 were females and 73 were males (2.13:1). This ratio was reversed in the other 2 ocean ages . 2 and .4. Although these latter ages accounted for only 14.8% and 4.6% males dominated in both groups, 1.47:1 and 3.33:1 respectively (Table 7).

Repeat spawners represented 12.1% of the total, the majority of which (84.6%) were second spawners. The remaining 15.4% were on their third spawning migration. Sixty-six percent of the multiple spawners were females. Twenty-seven (69.2\%) of the repeat spawners had spent only 1 year at sea prior to their first spawning. First ocean year fish were absent from all maiden spawners in this study period.

Table 5. Steelhead trout age groups from the Yakoun River, 1982-1983.

Age Group	Males	Females	Total	\% of Total
2.2	1	0	1	. 4
2.3	0	1	1	. 4
3.2	15	7	22	7.8
3.3	32	75	107	38.1
3.4	4	2	6	2.1
4.2	8	8	16	5.7
4.3	31	62	93	33.1
4.4	5	1	6	2.1
3.1S1	1	7	8	2.8
3.251	3	3	6	2.1
3.1SS1	1	0	1	. 4
4.151	4	9	13	4.6
4.2S1	0	1	1	. 4
Total	105	176	281	100.0
- R. 2	1	2	3	
R. 3	10	18	28	
R. 4	1	0	1	
R.1S1	0	1	1	
R.2S1	3	1	4	
R.1SS1	1	3	4	
R.2SS1	0	1	1	
Total	16	26	42	

* R = Central area (fresh water growth) is resorbed and therefore not readable.

Table 6. Number and percentage of male and female Yakoun River steelhead of different fresh water ages, 1982-83.

Fresh Water Males Females Total Age

2	1	1	2	.7
3	56	94	150	53.4
4	48	81	129	45.9

Table 7. $\frac{\text { Total }}{} 105$ Number, percent and sex ratio of male and female Yakoun River steelhead of different ocean ages, 1982-83 (repeat spawners excluded; includes R. scales).

Ocean Age	Males (\%)	Females (\%)	Ratio M/F	M \& F	$\%$	of Total
.2	$25(8.8)$	$17(6.0)$	$1.47: 1$	42	14.8	
.3	$73(25.7)$	$156(54.9)$	$.47: 1$	229	80.6	
.4	$10(3.5)$	$3(1.1)$	$3.33: 1$	13	4.6	
	-	-	-			
Total	$108(38)$	$17(62)$	$.61: 2$	284	100.0	

Table 8. Numbers and percent of repeat spawning Yakoun River steelhead of different ocean age groups. $\mathrm{N}=39$ or 12.1%.

Ocean Age	Males (\%)	Females (\%)	M \& F	$\%$	of Total
.1S1	$5(12.8)$	$17(43.6)$	22	56.4	
.2S1	$6(15.4)$	$5(12.8)$	11	28.2	
.1SS1	2 (5.1)	$3(7.7)$	5	12.8	
2SS1	$0(0.0)$	$1(2.6)$	1	2.6	
	-	-	-	-	-
Total	$13(33)$	$26(67)$	39	100.0	

The average fork length of all steelhead where both length and age were recorded was 76.8 cm , and ranged from 58.4 to 96.5 cm (Table 9). Some increase in size was noted relative to ocean residency. The average length of both male and female adult steelhead of 2-, 3- and 4- year ocean residency was $65.9,78.3$ and 91.2 cm respectively. Males were larger than females and averaged 78.8 cm , while the latter averaged 75.6 cm .

Table 9. Mean fork lengths (cm) of male and female Yakoun River steelhead of different ocean ages, 1982-83 (repeat spawners excluded).

Ocean Age	Males			Females			Males \& Females		
	N	\bar{x}	Range	N	\bar{x}	Range	N	$\overline{\mathrm{x}}$	Range
. 2	26	66.1	59.0-76.0	14	65.5	58.4-76.2	40	65.9	58.4-76.2
. 3	62	82.1	63.5-96.5	137	76.6	62.0-91.0	199	78.3	62.0-96.5
. 4	9	92.6	86.0-96.5	1	78.7	-	10	91.2	78.6-96.5

$\begin{array}{lllllllllll}\text { Total } 97 & 78.8 & 59.0-96.5 & 152 & 75.6 & 58.4-91.0 & 249 & 76.8 & 58.4-96.5\end{array}$

The Schnabel, Chapman and Schumacher population estimates (Ricker, 1970) were 1533, 1487 and 1637 steelhead respectively (Table 10). These estimates did not include fish removed by the sports fishery (Table 1). The confidence limits are wide and result from the low recapture rate.

Table 10. Yakoun River steelhead population estimates during the 1982-83 winter steelheading season.

Method	Estimate	95% Confidence Limits	
		Poisson distribution	Normal distribution
Schnabel	1532	$1091-2153$	$1133-2368$
Chapman	1487	$1064-2080$	$1112-2244$
Schumacher	1637	$1355-2069$	
$\overline{\mathrm{X}}$	$\underline{1552}$		

DISCUSSION

Considerably more steelhead were taken by study participants in the Yakoun River during the $1982-83$ season (349) than in the previous year (224). Since effort was about the same during both catch periods, the increased catch in the 1982-83 steelhead run was estimated to be 1500 fish with a range of 1000 to 2400 fish, while the previous winter run was calculated to be only about 850 fish. Data were obtained similarly in both study periods. Although to a lesser degree, the sports harvest questionnaire analysis showed a similar trend, with an estimated over-all catch of 1.31 fish/day during the $82-83$ season, and a . 99 fish/day during the $81-82$ season. The large number of steelhead taken during the study period as estimated by the steelhead harvest analysis relative to the total population was probably the result of inflated questionnaire results (Billings, 1982), and/or a conservative population estimate.

Although the multiple census population estimate requires a constant population, with no recruitment and no mortality during the experiment, the method is still useful even if these conditions are only approximately satisfied (Ricker, 1970). The majority of fish sampled and tagged were taken from areas readily accessible to anglers during the early part of the season. Consequently the distribution of tagged fish may not have reflected actual distribution of all steelhead. Overall abundance estimated in this study therefore likely
represented only the angled portion of the steelhead population rather than the entire Yakoun run.

The large catch in Zone 5 was assumed to be a reflection of better angler access to this area rather than a behavioural pattern of Yakoun River steelhead. In terms of physiography the Yakoun is fairly homogenous from lake to tidal influence, and on a strictly habitat availability basis any area is as likely to hold steelhead as any other. Perhaps a better estimate of steelhead spatial distribution could have been obtained by comparing success rates (i.e. catch/day) between zones. Since effort was not accurately recorded, such a comparison was not possible.

Steelhead can be found in the Yakoun from early October through to May. The catch in this study however occurred primarily during November, December and January. The Yakoun is the only readily available steelhead stream with an early winter run and therefore receives a disproportionate amount of effort during the early part of the season. Study participants exercised their option to angle other streams once these became productive. A similar catch trend was observed during the 1981-82 winter season.

Migration behaviour between initial capture and recapture was almost identical in both study years. During the winter of 1981-82, 64\% of all recaptures were taken in the area of original capture compared to 81% in the present study. The number of days between original and first recapture ranged from 0 to 122 ($\mathrm{X}=27.9$) days in the present study, while the year previous the range was 0 to 155 days with an average of 31 days. The average distance travelled between recaptures for the two seasons were $4.3 \mathrm{~km}(1982-83)$ and 2.5 km (1981-82). Repeat captures from both studies confirmed that once having migrated into an area of the river Yakoun steelhead remained relatively stationary for an extended period.

Three years of ocean growth dominated both study years (80\%, 198283; 73\%, 1981-82) while fresh water residence varied markedly between years. During the $1981-82$ season, 93% of all fish aged had spent 3 years in fresh water prior to ocean migration. The following year, only 53% were of this age group, while 46% were 4 year stream residents. Variations in repeat spawning frequency were also noted with 12.0% multiple spawners in 1982-83 but only 4.4\% in the previous year. Factors contributing to the observed variations in smolt age and/or repeat spawning frequency probably included overwinter survival of juveniles and relative brood year and ocean year class strength.

Overall sex ratio favoured females considerably in both study periods. Females were slightly smaller than males, and the average length of all fish sampled regardless of sex was larger in the 1981-82 study. The largest fish sampled throughout both study seasons ($\mathrm{N}=229$ $+349=573$) was 96.5 cm .

SUMMARY

1. Three hundred and forty-nine steelhead were angled in the Yakoun River by study participants from October, 1982 to April, 1983. Of these, 17 were killed (one a tagged fish), 29 were released untagged, while the remaining 303 were successfully tagged and released. Of the latter, 32 were recaptured once, and 5 were recaptured twice.
2. The greatest number of steelhead were taken in Zones 4, 5, and 6 or the middle to upper reaches of the river during November, December and January.
3. The average number of days between original and repeat capture was 27.9 and ranged from 0 to 122 days, while the average distance migrated during this time was 4.3 km and ranged from 0 to 40.8 km .
4. The dominant age classes were 3.3 (38.1\%) and 4.3 (33.1\%), followed by $2.3(7.8 \%), 4.2(5.7 \%), 4.1 S 1(4.6 \%)$, and $3.1 S 1$ (2.8\%). Repeat spawners comprised 12.1\% of total sampled.
5. Average length of Yakoun River steelhead during the 1982-83 study was 76.8 cm . Males were slightly larger than females, the former averaged 78.8 cm (range 59 - 96.5) whereas the latter averaged 76.8 cm (range 58.4-91). Sixty-two percent of all fish sampled were females.
6. Using three different multiple sample techniques, steelhead population estimates were 1532, 1487, and 1637 fish. Wide confidence limits ranging from 1091 to 2368 fish were the result of few repeat captures.

ACKNOWLEDGEMENTS

This project was accomplished primarily by the Port Clements Rod and Gun Club with the assistance of the Queen Charlotte Islands Chapter of the B.C. Steelhead Society and Ministry of Environment Staff. Interpretations of scales collected were accomplished by R. Tetreau and G. Schultze, and M. Lough calculated the population estimates.

The study was funded as a Public Participation Project by the Salmonid Enhancement Program.

REFERENCES

Billings, S.J. 1982. Steelhead Harvest Analysis 1982-83, Fisheries Technical Circular No. 56, Fish and Wildlife Branch, Victoria, B.C. 26 pp .

Brown, R.F. and M.M. Musgrave, 1979. Preliminary Catalogue of Salmon Streams and Spawning Escapements of Statistical Area 1 - Queen Charlotte Islands. Fisheries and Marine Service Data Report \#132. 67 pp.
de Leeuw, A.D. and M.R. Whately, 1983. Steelhead of the Yakoun River. Some aspects of their life history, population size and the sport fishery, 1981-82. Skeena Fisheries Report \#82-1. Ministry of Environment, Smithers, B.C., 23 pp.

Environment Canada, 1984. Historical Stream flow Summary, B.C. Inland Waters Directorate, Water Resources Branch, Water Survey of Canada, Ottawa, Canada, 1985.

Narver, D.W. and F.C. Withler, 1974. Steelhead of the Nanaimo River, aspects of their biology and the fishery from three years of anglers' catches. Fisheries and Marine Services, Nanaimo, B.C., Cir. No. 99, 25 pp.

Ricker, W.E. 1970. Handbook of computations for biological statistics of fish populations. Bulletin \#191. Fisheries Research Brd., Canada.

Water Survey of Canada, 1977. Water temperatures, British Columbia and Yukon Territory, Environment Canada, Inland Waters Directorate, Pacific and Yukon Region, Water Survey of Canada, Vancouver, B.C.

APPENDICES

I. Yakoun River 1982-83 winter steelhead original captures.
II. Yakoun River 1982-83 winter steelhead repeat captures.

Appendix I. Yakoun River 1982-83 winter steelhead original captures. * $=$ killed

Fish
Number

1	Oct	30/82	Or	06321	F	--	5.0	3	3.4
2	Oct	30/82	Or	06323	F	--	4.1	3	3.3
3	Oct	31/82	Or	06324	F	--	4.5	5	4.3
4	Nov	1/82	Or	06325	M	81.3	5.4	3	4.151
5	Nov	1/82	Or	06466	F	76.2	4.5	3	3.3
6*	Oct	31/82		--	M	--	6.8	3	R. 3
7	Nov	5/82	Or	06452	M	91.4	6.4	3	3.2S1
8	Nov	5/82	Or	06453	M	--	4.1	5	R.1SS1
9	Nov	6/82	Or	06454	M	--	5.0	4	4.3
10	Nov	7/82	Or	06457	F	--	4.5	5	3.3
11	Nov	7/82	Or	06458	F	--	5.4	5	3.3
12	Nov	7/82	Or	06459	M	--	7.5	5	R.2S1
13	Nov	7/82	Or	06460	F	--	3.6	4	3.3
14	Nov	11/82	Or	06468	F	66.0	3.6	4	3.1S1
15	Nov	11/82	Or	06470	F	--	4.5	4	3.3
16	Nov	11/82	Or	06467	M	68.6	4.5	4	no scales
17	Nov	11/82	Or	06461	M	--	2.7	4	4.2
18	Nov	13/82	Or	06463	F	--	5.0	5	3.3
19	Nov	14/82	Or	06464	F	--	4.5	5	4.3
20	Nov	17/82	Or	06246	M	81.3	5.9	3	R. 3
21*	Nov	1/82		--	M	94.0	9.7	-	$4.2 \mathrm{S1}$
22	Nov	18/82	Or	06253	F	73.7	4.1	4	4.1S1
23	Nov	18/82	Or	06252	F	73.7	3.6	4	3.3
24	Nov	18/82	Or	06251	F	73.7	4.1	4	4.3
25	Nov	18/82	Or	06250	F	76.2	4.1	4	3.2
26	Nov	18/82	Or	06249	F	76.2	4.5	4	4.3
27	Nov	18/82	Or	06248	F	71.1	3.6	4	4.3
28	Nov	18/82	Or	06247	M	76.2	4.5	4	R. 3
29	Nov	19/82	Or	06254	M	91.4	6.8	5	4.3
30	Nov	19/82	Or	06256	M	81.3	5.0	5	3.3
31	Nov	19/82	Or	06257	F	73.7	3.6	5	3.2
32	Nov	19/82	Or	06258	F	76.2	4.5	5	3.3
33	Nov	19/82	Or	06259	F	76.2	4.5	5	4.3
34	Nov	19/82	Or	06260	M	81.3	4.7	5	3.3
35	Nov	19/82	Or	06076	F	76.2	4.1	5	3.3
36	Nov	19/82	Or	06077	M	81.3	5.9	5	4.3
37	Nov	19/82	Or	06078	F	76.2	4.5	5	4.3
38	Nov	19/82	Or	06079	F	71.1	3.6	5	3.3
39	Nov	19/82	Or	06080	M	83.8	5.9	5	4.3
40*	Nov	19/82		--	M	86.4	5.4	5	R. 3
41	Nov	20/82	Or	06081	F	--	7.0	5	R.1SS1
42	Nov	20/82	Or	06082	F	73.7	5.0	5	R. 3
43	Nov	20/82	Or	06083	F	78.7	5.4	5	3.3
44	Nov	20/82	Or	06085	M	83.8	6.4	5	4.3

Maturity
Fresh
Fresh
Fresh Fresh
Fresh
Fresh
Dark
Fresh
Fresh Fresh
Fresh
Fresh
Fresh
Fresh
Fresh Dark Fresh Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh
Fresh

Fresh
Fresh
Fresh
Fresh
3.2

46	Nov	21/82	Or	06087	F	86.4	6.4	5	3.2S1	
47	Nov	21/82	Or	06088	F	76.2	3.6	5	R. 3	
48	Nov	21/82	Or	06089	F	73.7	3.2	5	R. 3	
49	Nov	21/82	Or	06096	F	81.3	5.4	5	3.2S1	
50	Nov	21/82	Or	06098	F	76.2	4.1	5	3.3	
51	Nov	21/82	Or	06099	F	76.2	4.1	5	4.3	
52	Nov	21/82	Or	06100	F	76.2	4.1	5	3.3	
53	Nov	21/82	Or	06551	F	76.2	3.6	5	3.151	
54	Nov	21/82	Or	06552	F	76.2	4.1	5	4.3	
55	Nov	21/82	Or	06554	F	78.7	4.5	5	4.3	
56	Nov	21/82	Or	06084	F	76.2	4.5	5	P. 3	
57*	Nov	22/82		--	M	82.6	5.6	5	4.3	
58	Nov	22/82	Or	06556	F	76.2	4.1	5	R. 3	
59	Nov	22/82	Or	06560	F	78.7	5.0	5	R.1S1	
60	Nov	22/82	Or	06559	M	81.3	5.4	5	R. 3	
61	Nov	22/82	Or	06558	F	78.7	5.0	5	3.3	
62	Nov	22/82	Or	06557	F	73.7	3.6	5	3.1S1	
63	Nov	19/82	Or	06201	F	75.0	5.0	5	4.151	Fresh
64	Nov	19/82	Or	06202	M	95.3	7.7	5	3.3	Fresh
65	Dec	4/82	Or	06203	M	66.0	3.6	4	3.2	Dark
6 C	Nov	14/82	Or	06204	M	--	6.4	3	3.3	Fresh
67	Dec	4/82	Or	06205	M	81.3	5.4	4	3.3	Dark
68	Dcc	10/82	Or	06206	F	62.3	3.8	5	4.2	Dark
69	Dec	10/82	Or	06207	F	82.6	5.0	5	3.3	Fresh
70	Dec	10/82	Or	06208	F	87.7	5.4	5	3.3	Fresh
71	Dec	10/82	Or	06209	M	94.0	7.7	5	4.4	Fresh
72*	Nov	19/82		--	F	75.0	5.0	4	4.3	Fresh
73*	Nov	19/82		--	F	77.5	4.1	4	3.3	Fresh
74	Dec	4/82	Or	06313	F	81.3	5.9	3	3.3	Fresh
75	Dec	4/82	Or	06309	F	94.0	8.2	3	3.2S1	Fresh
76	Dec	4/82	Or	06310	F	82.0	6.4	3	3.1S1	Fresh
77	Dec	9/82	Or	06315	F	62.3	2.7	2	3.2	Fresh
78*	Dec	9/82	Or	06314	M	99.1	10.1	2	3.2S1	Fresh
79	Dec	9/82	Or	06317	F	72.4	4.1	2	3.3	Fresh
80	Dec	9/82	Or	06316	F	76.1	4.7	3	3.3	Fresh
81	Dec	10/82	Or	06306	M	83.8	5.9	3	4.1S1	Dark
82	Dec	10/82	Or	06319	F	76.2	4.3	3	3.3	Fresh
83	Dec	10/82	Or	06318	F	78.7	4.5	3	3.3	Fresh
84	Dec	11/82	Or	06308	F	71.7	5.0	3	4.1S1	Fresh
85	Dec	11/82	Or	06307	F	77.5	5.9	3	4.3	Fresh
86	Dec	16/82	Or	06217	F	80.0	5.4	4	4.1S1	Fresh
87	Dec	16/82	Or	06561	M	66.0	2.5	3	4.2	Fresh
88	Dec	16/82	Or	06562	M	61.0	2.3	5	3.2	Fresh
89	Nov	26/82	Or	06292	F	74.0		6	3.1S1	
90	Nov	20/82	Or	06291	M	85.0		6	3.1S1	
91	Dec	2/82	Or	06305	F	76.0		6	3.1S1	
92	Dec	2/82	Or	06304	M	82.0		6	4.3	

93	Dec	2/82	Or	06303	F	81.0		6	4.3	
94	Dec	2/82	Or	06296	F	75.0		6	3.3	
95	Dec	2/82	Or	06295	M	82.0		6	3.3	
96	Dec	2/82	Or	06294	M	93.0		6	3.3	
97	Dec	2/82	Or	06293	M	59.0		6	3.2	
98	Dec	3/82	Or	03042	M	89.0		6	3.2S1	
99	Dec	3/82	Or	03041	F	72.0		6	4.3	
100	Dec	3/82	Or	06302	F	82.0		6	4.3	
101	Dec	3/82	Or	06301	F	72.0		6	4.1S1	
102	Dec	3/82	Or	06300	M	62.0		6	3.2	
103	Dec	3/82	Or	06299	F	81.0		6	3.3	
104	Dec	3/82	Or	06298	F	75.0		6	4.1S1	
105	Dec	3/82	Or	06297	M	78.0		6	4.3	
106	Dec	9/82	Or	03050	M	60.0		6	3.2	
107	Dec	9/82	Or	03049	F	83.0		6	3.3	
108	Dec	9/82	Or	03048	F	78.0		6	3.3	
109	Dec	9/82	Or	03047	M	90.0		6	4.3	
110	Dec	9/82	Or	03046	F	79.0		6	3.3	
111	Dec	9/82	Or	03045	F	77.0		6	4.3	
112	Dec	9/82	Or	03044	F	60.0		6	4.2	
113	Dec	9/82	Or	03043	F	74.0		6	3.3	
114	Dec	9/82	Or	06288	M	76.0		6	3.3	
115	Dec	10/82	Or	06290	M	87.0		6	3.3	
116	Dec	10/82	Or	06289	M	69.0		6	3.2	
117	Dec	10/82	Or	06276	F	79.0		6	R.1SS1	
118	Dec	10/82	Or	06277	F	78.0		6	3.3	
119	Dec	10/82	Or	06287	M	76.0		6	4.2	
120	Dec	19/82	Or	06481	F		3.6	4	3.3	Fresh
121	Dec	19/82	Or	06482	F		5.0	4	3.3	Fresh
122	Dec	19/82	Or	06482	F		4.5	5	3.3	
123	Dec	19/82	Or	06485	F		3.6	5	R. 3	Fresh
124	Dec	21/82	Or	06486	F		4.5	5	4.1SS1	Dark
125	Dec	20/82	Or	06484	M	81.3	5.4	5	4.3	
126	Dec	20/82	Or	06575	M	94.0	7.7	5	4.4	Dark
127*	Dec	20/82			F	76.2	4.5	5	3.3	
128	Dec	20/82	Or	06563	M	71.1	3.2	5	R. 2	
129	Dec	20/82	Or	06564	F	78.7	5.4	5	R. 3	
130	Dec	20/82	Or	06565	F	76.2	4.5	5	4.1S1	
131	Dec	20/82	Or	06566	M	81.3	5.4	5	4.3	
132	Dec	20/82	Or	06567	F	81.3	5.4	5	4.3	
133	Dec	20/82	Or	06568	M	94.0	7.9	5	3.4	
134	Dec	20/84	Or	06569	M	78.7	5.4	5	3.3	
135	Dec	20/82	Or	06570	F	71.7	3.2	5	4.2	
136	Dec	20/82	Or	06571	F	76.2	5.4	5	4.3	
137	Dec	20/82	Or	06572	F	76.2	4.5	5	R. 3	
138	Dec	20/82	Or	06573	F	76.2	4.5	5	4.3	
139	Dec	20/82	Or	06574	F	76.2	4.5	5	R. 3	
140	Dec	21/82	Or	03026	F	90.2	7.3	5	R. 2 SS 1	
141	Dec	21/82	Or	03028	F	79.0	4.5	5	4.3	

142	Dec	$21 / 82$	Or	03029	F	78.7	5.4	5	3.3
143	Dec	$21 / 82$	Or	03030	M	83.8	6.4	5	3.3
144	Dec	$21 / 82$	Or	03031	F	76.0	4.5	5	3.3
145	Dec	$21 / 82$	Or	03032	F	76.2	4.5	5	4.3
146	Dec	$21 / 82$	Or	03033	M	91.0	6.8	5	4.4
147	Dec	$21 / 82$	Or	03034	M	78.7	5.4	5	4.3
148	Dec	$21 / 82$	Or	03035	F	78.0	4.5	5	4.3
149	Dec	$21 / 82$	Or	03036	F	68.0	3.6	5	R .3
150	Dec	$21 / 82$	Or	03037	M	80.0	5.4	5	4.1 S 1
151	Jan	$3 / 83$	Or	03051	F	76.2	4.5	5	3.3
152	Jan	$3 / 83$	Or	03052	F	76.2	4.5	5	3.3

153	Jan	3/83	Or	03053	F	81.3	5.9	5	4.3	
154	Jan	3/83	Or	03054	M	76.2	5.4	5	3.3	
155	Jan	3/83	Or	03055	F	73.7	4.1	5	4.3	
156	Jan	3/83	Or	03038	F	71.1	2.7	5	3.3	
157	Jan	3/83	Or	03066	M	88.9	6.4	5	4.3	Dark
158	Jan	3/83	Or	03067	F	83.8	5.9	5		
159	Jan	3/83	Or	03068	M	73.7	4.3	5	4.3	Dark
160	Jan	4/83	Or	03039	F	78.7	4.5	5	3.3	
161	Jan	4/83	Or	03040	F	76.2	4.5	5	4.3	
162	Jan	4/83	Or	03056	F	76.2	4.5	5	R. 3	
163	Jan	4/83	Or	03057	F	73.7	4.1	5	4.3	
164	Jan	4/83	Or	03058	F	76.2	4.5	5	4.1S1	
165	Jan	6/83	Or	03059	F	73.7	3.6	5		
166	Jan	13/83	Or	06223	F	76.2	4.5	5	3.3	
167	Jan	13/83	Or	06222	F	67.3	2.7	5	3.2	
168	Jan	13/83	Or	06221	F	78.7	5.0	5	3.4	
169	Jan	13/83	Or	06220	F	73.7	4.1	5	4.3	
170	Jan	13/83	Or	06219	F	78.7	5.0	5	4.3	
171	Jan	13/83	Or	06218	M	72.4	3.6	5	3.3	
172	Jan	13/83	Or	03065	M	73.7	4.1	5	4.3	
173	Jan	13/83	Or	03064	F	76.2	4.5	5	3.3	
174	Jan	13/83	Or	03063	M	86.7	6.4	5	4.3	
175	Jan	13/83	Or	03062	F	73.7	4.1	5	R. 3	
176	Jan	13/83	Or	03061	F	76.2	4.5	5	3.3	
177	Jan	13/83	Or	03060	M	78.7	5.0	5	R. 3	
178	Jan	17/83	Or	06224	M	83.8	5.9	5	4.3	Dark
179	Jan	17/83	Or	06225	F			5	3.3	
180	Jan	17/83	Or	06226	M	69.9	2.7	5	3.2	
181	Jan	17/83	Or	06227	F	67.3	3.2	5	3.3	
182	Jan	17/83	Or	06228	F	81.3	5.4	5	3.3	
183	Jan	17/83	Or	06229	F			5		
184	Jan	17/83	Or	03070	M	81.3	5.4	5	4.3	
185	Jan	17/83	Or	03071	F	78.7	5.0	5	4.3	
186	Jan	17/83	Or	03072	M	68.6	3.2	5	3.2	
187	Jan	17/83	Or	03073	M	83.8	6.4	5	3.3	
188	Jan	17/83	Or	03074	M	86.7	6.6	5	3.1SS1	
189	Jan	17/83	Or	03075	F	66.0	2.7	5	4.2	Fresh
190	Jan	17/83	Or	03076	F	76.2	4.5	5	4.3	Fresh
191	Jan	17/83	Or	03077	F	81.3	5.4	5	R.2S1	Fresh
192*	Jan	17/83			F	70.0		5	3.3	Dark
193*	Jan	17/83			F	75.0		5	4.3	Fresh
194	Jan	18/83	Or	03078	M	63.5	2.3	5	4.3	
195	Jan	18/83	Or	03079	F	73.7	3.6	5		
196	Jan	18/83	Or	03080	M	81.3	5.4	5	R. 3	
197	Jan	18/83	Or	03141	M	96.5	8.2	5	4.3	
198	Jan	18/83	Or	03142	F	76.2	4.5	5	4.3	
199	Jan	21/83	Or	03143	M	88.0	6.8	5	4.3	
200	Jan	21/83	Or	03144	F	80.0	5.0	5	4.3	Fresh

201	Jan	21/83	Or	03145	M	83.8	6.4	5	4.3	
202	Dec	11/82	Or	06320	F	68.6	4.5	3	R. 3	Fresh
203	Dec	11/82	Or	03001	M	95.3	8.4	2	3.3	Fresh
204	Dec	12/82	Or	03002	F	76.2	5.4	2	3.3	Fresh
205	Dec	13/82	Or	03003	M	86.7	7.3	2	3.3	Fresh
206	Dec	13/82	Or	03005	M	95.3	8.4	3	R. 4	Fresh
207	Dec	13/82	Or	03004	F	62.3	2.7	3	3.2	Fresh
208	Dec	13/82	Or	03006	F	58.4	2.3	3	3.2	Fresh
209	Dec	13/82	Or	03007	F	68.5	3.6	3	3.3	Fresh
210	Dec	16/82	Or	03008	M	83.8	5.6	3	3.3	
211	Dec	11/82	Or	03009	F	83.8	5.6	3	4.3	
212	Dec	30/82	Or	03010	M	71.1	3.8	3	4.2	Fresh
213	Jan	2/83	Or	03011	M	61.0	2.7	3	3.2	Fresh
214*	Jan	2/83			M	67.3		5	4.2	Dark
215	Jan	21/83			M	96.5	8.2	3	3.4	Fresh
216	Jan	18/83			M	64.0		5	3.2	Fresh
217	Nov	27/82	Or	06473	F		4.5	5	4.3	Fresh
218	Nov	27/82	Or	06474	F		4.5	5	R. 3	Fresh
219	Nov	27/82	Or	06475	F		3.6	5	4.3	Fresh
220	Nov	27/82	Or	06478	M		5.0	5	4.3	Fresh
221	Nov	20/82	Or	06487	F	66.0	3.6	5	3.3	Fresh
222	Nov	20/82	Or	06488	F		5.0	5	3.3	Fresh
223	Nov	20/82	Or	06490	M		5.4	5	4.3	Dark
224	Nov	21/82	Or	06494	M		7.5	4		Dark
225	Nov	21/82	Or	06495	M		5.9	4	4.3	Dark
226	Nov	27/82	Or	06496	M		5.4	5	3.3	Dark
227	Nov	27/82	Or	06497	F		2.3	5	4.2	Fresh
228	Nov	27/82	Or	06498	M		4.1	5	R. 3	Dark
229	Nov	27/82	Or	06499	M		5.4	5	R. 3	Fresh
230	Nov	27/82	Or	06500	F		5.0	5	4.3	Fresh
231	Jan	24/83	Or	03146	F	73.7	4.1	5	3.3	
232	Jan	24/83	Or	03147	F	77.5	5.0	5	3.3	
233	Jan	24/83	Or	03148	M	66.0	2.5	5		Dark
234	Jan	24/83	Or	03149	M	83.8	5.9	5	3.3	
235	Jan	24/83	Or	03150	F	78.7	5.0	5	R. 3	
236	Jan	24/83	Or	03151	F	76.2	4.5	5	3.3	
237	Jan	24/83	Or	03152	F	72.4	3.6	5		Dark
238	Jan	24/83	Or	03153	F	78.7	4.5	5	3.3	Fresh
239	Jan	27/83	Or	03154	F	76.2	4.5	5		
240	Jan	27/83	Or	03155	M	63.5	2.3	5	3.2	
241	Jan	27/83	Or	03156	M	81.3	5.9	5	R. 3	Dark
242	Jan	27/83	Or	03157	M	66.0	2.5	5	3.2	
243	Jan	27/83	Or	03158	F	78.7	5.0	5	4.3	
244	Jan	27/83	Or	03159	F	81.3	5.4	5	3.3	
245	Jan	31/83	Or	03160	M	68.6	3.4	5	3.2	
246	Jan	31/83	Or	03161	F	78.7	5.0	5	4.3	
247	Jan	31/83	Or	03162	F	78.7	5.0	5	4.3	
248	Jan	31/83	Or	03163	F	81.3	5.4	5	3.3	
249	Jan	31/83	Or	03164	F	76.2	4.1	5	3.3	

250	Jan	31/83	Or	03165	M	78.7	4.5	5	3.3	Dark
251	Jan	31/83	Or	03166	F	76.2	4.5	5	3.3	
252	Jan	31/83	Or	03167	M	61.0	2.5	5		
253	Nov	17/82	Or	06465	F	76.2	4.5		3.3	Fresh
254	Nov	17/82	Or	06466	F	81.3	5.0		4.3	Fresh
255	Nov	17/82	Or	06472	M	86.7			4.3	Fresh
256	Jan	22/83	Or	03081	M		6.8	5		Fresh
257	Jan	22/83	Or	03082	M			5		Fresh
258	Jan	22/83	Or	03083	F		3.6	5		Fresh
259	Jan	22/83	Or	03084	M		8.2	5		Dark
260	Jan	22/83	Or	03085	M		5.4	5		Fresh
261	Jan	22/83	Or	03086	F		3.2	5		Fresh
262	Jan	22/83	Or	03087	F		5.0	4		Fresh
263	Jan	22/83	Or	03088	F		3.2	4		Fresh
264	Jan	30/83	Or	03089	F		5.4	5		Fresh
265	Jan	30/83	Or	03090	F		4.5	5		Fresh
266	Jan	30/83	Or	03091	F		5.0	4		Fresh
267	Feb	5/83	Or	03092	F		7.7	4	4.4	Fresh
268	Feb	13/83	Or	03093	F		3.2	5		Fresh
269	Feb	19/83	Or	03094	F		4.5	4	3.3	Fresh
270	Feb	19/83	Or	03095	M		7.3	4	3.4	Kelt
271	Feb	19/83	Or	03096	M		5.4	4	4.3	Fresh
272	Dec	28/82	Or	06927	M	73.7	4.5	5		
273	Dec	28/82	Or	06928	M	61.0	3.2	5	3.2	
$274 *$	Jan	3/83			F	75.0		5	3.3	
275	Feb	17/83	Or	09576	F					
276*	Feb	17/83			M			5		
277	Feb	21/83	Or	06283	F	75.0		6	4.3	
278	Feb	21/83	Or	06281	F	71.0		6	4.3	
279	Feb	21/83	Or	06282	F	74.0		6	4.3	Kelt
280	Feb	21/83	Or	06285	F	74.0		6	3.3	Kelt
281	Feb	24/83	Or	03197	F	74.0		6	3.3	
282	Feb	24/83	Or	03198	F	80.0		6	2.3	
283	Feb	1/83			F	73.0		6	4.3	
284	Feb	1/83			F	79.0		6	4.3	
285	Feb	1/83			F	82.0		6	4.2S1	
286	Feb	22/83	Or	06284	F	80.0		6	R. 3	
287	Feb	1/83	Or	06286	F	84.0		6	4.3	
288	Feb	18/83	Or	06280	M	90.0		5	4.4	
289	Feb	1/83	Or	06278	F	82.0		6	4.3	
290	Feb	1/83			M	82.0		6	3.3	
291*	Feb	1/83			F	70.0		5	3.3	
292*	Feb	18/83			F	91.0		6	4.3	Fresh
293*	Mar	3/83			F			5	3.3	Fresh
294	Mar	4/83	Or	06953	M	66.0		6	R. 2	
295	Mar	1/83	Or	06974	F	76.0		4	3.3	Kelt
296	Mar	1/83	Or	03212	F	78.0		6	4.3	Kelt
297	Mar	1/83	Or	03208	F	62.0		6	3.3	Fresh
298	Mar	1/83	Or	03203	M	75.0		6	3.3	Dark

299	Mar	1/83	Or	03204	F	70.0		6	3.3	Fresh
300	Mar	1/83	Or	03205	F	76.0		6	3.3	Kelt
301	Mar	1/83	Or	03206	F	74.0		6	3.3	Kelt
302	Mar	1/83	Or	03211	M	79.0		6	4.3	Dark
303	Mar	1/83	Or	03199	M	80.0		6	3.3	Dark
304	Mar	1/83	Or	03200	M	61.0	2.5	6	2.2	Dark
305	Mar	4/83	Or	06954	F	62.0		4	3.2	
306	Mar	4/83	Or	06955	M	76.0		4	3.3	Dark
307	Mar	4/83	Or	06952	F	76.0		4	4.3	
308	Mar	4/83	Or	03222	F	76.0		4	3.3	
309	Mar	4/83	Or	03221	M	72.0		4	4.1S1	
310	Mar	4/83	Or	03220	M	69.0		4	R. 2	
311	Mar	3/83	Or	03217	F	65.0		5	4.2	Fresh
312	Mar	3/53	Or	03218	F	82.0		5	3.3	Fresh
313	Mar	3/83	Or	03219	F	78.0		5	3.3	Fresh
314	Mar	2/83	Or	06951	F	63.5		6	4.2	
315	Mar	2/83	Or	03215	F	73.0		6	4.3	Kelt
316	Mar	2/83	Or	03216	F			6		Kelt
317	Mar	2/83	Or	03210	F	66.5		6	4.2	Fresh
318	Mar	4/83	Or	03223	M	86.0		4	4.4	
319	Mar	1/83	Or	03201	M	93.0		6	3.4	Dark
320	Mar	2/83	Or	03209	F	76.0		6	3.3	
321	Mar	1/83	Or	03213	M	83.0		6	4.3	Dark
322	Mar	1/83	Or	03214	F	83.0		6	4.3	Fresh
323	Mar	1/83	Or	03207	M	84.0		6	3.3	
324	Mar	1/83	Or	03202	M	84.0		6	3.3	Dark
325	Apr	7/83	Or	06929	M	71.1	5.0	2	R. 3	
326	Jan	18/83	Or	03101	M	78.7	5.4	3	3.3	Fresh
327	Dec	18/82			M	69.0			4.2	
328	Oct	22/83			F	76.0			4.3	
329	Nov	19/82			F	78.0			R. 3	
330	Nov	19/82			M	82.0			3.3	
331	Nov	19/82			M	78.0			3.3	
332	Nov	19/82			F	76.0			4.3	
333	Dec	9/82			F	78.0			4.3	
334	Dec	9/82			M	84.0			4.3	
335	Dec	9/82			M	62.0			4.2	
336	Oct	22/82			F	77.0		3	4.1S1	
337	Oct	22/82			M	70.0		3	4.2	
338	Oct	22/82			M	79.0		3	3.1S1	
339	Oct	22/82			F	75.0		3	4.3	
340	Oct	21/82			M	97.0	8.6	3	3.3	Dark
341	Oct	27/82			F	80.0			4.3	
342	Nov	4/82			F	70.0			4.3	
343	Nov	4/82			F	80.0			4.3	
344	Nov	4/82			M	65.0			4.3	
345	Nov	$5 / 82$			F	83.0			4.3	
346	Nov	$5 / 82$			F	76.0			4.3	
347	Nov	18/82			F	77.0			3.3	

348	Nov	$18 / 82$	M	82.0	
349	Nov	$1 / 82$	M	94.0	9.7

APPENDIX II. Yakoun River $1982-83$ winter steelhead repeat captures

* $=$ killed

Fish		Tag Colour		Original Capture			Repeat Capture I			Repeat Capture II			Time Between	Distance
Number		and Number	Sex		ate	Zone		Date	Zone		ate	Zone	Captures (days)	km
10	Or	06457	F	Nov	$7 / 82$		Nov	10/82	5				3	-. 1
25	Or	06250	F	Nov	18/82	5	Nov	19/82	5	Jan	22/83	5		0
126	Or	06475	M	Dec	19/82		Dec	20/82	5				1	
124	Or	06486	F	Dec	21/82		Jan	3/83	5					
--		28096	I		?		Jan	4/83	5					
157	Or	03066	M	Jan	3/83	5	Jan	4/83	5				1	0
226	Or	06496	M	Nov	27/82		Dec	20/82	5					
33	Or	06259	F	Nov	19/82		Dec	20/82	5					$-.6$
228	Or	06498	M	Nov	27/82		Dec	15/82	5	May	15/83	$\begin{gathered} \text { net } \\ \text { fishery } \end{gathered}$		
149	Or	03036	F	Dec	21/82		Jan	13/83	5					
178	Or	06224	M	Jan	17/83	5	Jan	17/83	5	Jan	18/83*			
129	Or	06564	F	Dec	20/82		Jan	18/83*	5					
136	Or	06571	F	Dec	20/82		Jan	21/83	5					
198	Or	03142	F	Jan	18/83	5	Jan	18/83	5	Jan	22/83	5	4	0
34	Or	06260	M	Nov	19/82		Nov	20/82	5					
227	Or	06497	F	Nov	27/82		Nov	27/82	5				0	0
76	Or	06310	F	Dec	4/82		Jan	24/83	5					
131	Or	06566	M	Dec	20/82		Jan	24/83	5					
257	Or	03082	M	Jan	22/83		Jan	24/83	5					
63	Or	06201	F	Nov	19/82		Jan	27/83	5					
244	Or	03159	F	Jan	27/83		Jan	31/83	5					
251	Or	03166	-	Jan	31/83	5	Jan	31/83	5					
132	Or	06567	F	Dec	20/82		Dec	21/82	5				0	0
138	Or	06573	F	Dec	20/83		Dec	21/82	5				1	0
11	Or	06458	F	Nov	$7 / 82$		Dec	28/82	5	Mar	1/83	6		
258	Or	03083	F	Jan	22/83		May	15/83	net					
168	Or	06221	F	Jan	13/83		May	15/83	```fishery net fishery```					
115	Or	06290	M	Dec	10/82		Mar	1/83	6					
162	Or	03056	F	Jan	4/83		Mar	1/83	6					
133	Or	06568	M	Dec	20/82		Mar	1/83	6					
157	Or	00717	F	Jan	30/82	6	Mar	3/83	6					
(1982)														

310	Or	03220	M	Mar	4/83	6	Mar	4/83	6	
TOTAL										4
								net		1 (net
								ry)		fishery)

