RECONNAISANCE SURVEY OF

BRISTOL LAKE

WATERSHED CODE 480 - 6972 - 657 - 01

SURVEY DATES : 08 - 10 OCTOBER 1995

Prepared for:

MINISTRY OF ENVIRONMENT, LANDS AND PARKS

Fisheries Branch Skeena Region 3726 Alfred Ave. Box 5000 Smithers, BC V0J 2N0

By:

Joseph S. DeGisi Jeffrey A. Burrows RR#1, Site 27, C2 Smithers, BC V0J 2N0

CONTENTS

LIST OF FIGURES	ii
LIST OF TABLES	iii
LIST OF PHOTOGRAPHS	iii
LIST OF APPENDICES	iii
1. SUMMARY	1
2. DATA ON FILE	2
3. GEOGRAPHIC AND MORPHOLOGIC INFORMATION	2
3.1 Location	2
3.2 Physical Data	5
3.3 Benchmark	5
3.4 Prior Surveys	5
3.5 Lake Drainage	5
3.6 Terrain and Vegetation	6
3.6.1 Immediate Shore	6
3.6.2 Surrounding Country	6
4. ACCESS, DEVELOPMENTS AND LAND USE	6
4.1 Access	6
4.2 Development and Land Use	7
4.2.1 Resorts and Campsites	7
4.2.2 Mining Claims	7
4.2.3 Timber Harvest	7
4.2.4 Waste Permits	7
4.2.5 Water Permits	7
4.2.6 Obstructions and Pollutions	7
4.2.7 Recreation Resource Inventory	7
4.2.8 Special Regulations and Restrictions	7
4.2.9 Comments	7

5. FISH POPULATION SAMPLING	
5.1 Fish Species Composition	8
5.2 Relative Abundance	9
5.3 Size, Age, and Growth	9
5.3.1 Non-salmonid Species	
5.3.2 Cutthroat Trout	
5.4 Sexual Maturity and Condition	
5.4.1 Cutthroat Trout	
5.5 Other comments	
6. LIMNOLOGICAL SAMPLING	
6.1 Stratification	14
6.2 Water Chemistry	
7. OTHER FLORA AND FAUNA	
7.1 Aquatic Plants	
7.2 Zooplankton	
7.3 Waterfowl and Other Fauna	
8. MANAGEMENT COMMENTS	
9. PHOTOGRAPHS	

LIST OF FIGURES

Figure 1. Location of Bristol Lake	
Figure 2. Bristol Lake, enlargement from air photo 30BCB92077 No. 109	4
Figure 3. Length-frequency histograms for catostomid species	
Figure 4. Length-frequency histograms for cyprinid species	
Figure 5. Length frequency distribution for cutthroat trout.	11
Figure 6. Age frequency histogram and length-at-age for cutthroat trout	
Figure 7. Ford-Walford plot for cutthroat trout .	
Figure 8. Estimated length - weight relationship for Bristol Lake cutthroat trout.	
Figure 9. Temperature and dissolved O ₂ profiles for Bristol Lake.	14

LIST OF TABLES

Table 1. Fish sampling effort and catch for all methods.	8
Table 2. Descriptive statistics for length distributions of fish species captured	9
Table 3. Sexual maturity of Bristol Lake cutthroat trout, by age	12
Table 4. Water chemistry parameters.	15
Table 5. Estimated nitrogen : phosphorus ratios.	15
Table 6. Metals concentrations.	16
Table 7. Zooplankton.	17

LIST OF PHOTOGRAPHS

Photograph 1 (cropped). Bristol Lake, view SW to Babine Mountains from lake center	19
Photographs 2-3 (cropped). Bristol Lake, view NE from road access point at mid-W shore.	19
Photographs 4-7 (cropped). Coarsescale sucker, longnose sucker, redside shiner, peamouth chub	20
Photographs 8-10 (cropped). Rainbow trout, cutthroat trout, mountain whitefish.	21
Photograph 11. Bristol Creek, outlet stream of Bristol Lake; beaver dam at the lake outlet	22
Photograph 12. Unnamed channel, inlet to the west shore of Bristol Lake	22
Photograph 13. Unnamed southern inlet to the east shore of Bristol Lake	23
Photograph 14. Unnamed inlet to the south shore of Bristol Lake	23

LIST OF APPENDICES

APPENDIX A. ABBREVIATIONS AND OTHER NOTES	24
APPENDIX B. STREAM SURVEY FORMS	25
APPENDIX C. FISH SAMPLING FORMS	31
APPENDIX D. LIMNOLOGICAL SAMPLING FORMS	46
APPENDIX E. PHOTOGRAPH / NEGATIVE DIRECTORY	48

1. SUMMARY

Bristol Lake is located in the Bulkley Forest District, 41 km northeast of the town of Smithers. Reconnaisance inventory of the lake was made 08 - 10 October 1995. The lake covers 81 surface hectares and is round in shape and shallow (mean and maximum depths of 1.9 m and 5.7 m). It lies 814 m above sea level and drains via Bristol Creek to the Fulton River, Babine Lake and the Skeena system. More than 95 % of the shoreline consists of cutblocks or sedge wetlands. Access was achieved by 2WD forest road to near the lake margin.

On the survey dates, the lake was thermally well-mixed with only slight near-bottom oxygen depletion. Lake water was neutral with very low specific conductance. Phosphorus and nitrogen concentrations imply oligotrophy and low productivity.

Lake fish populations were sampled by an overnight set of one standard 91m experimental multi-mesh sinking gillnet and 5 minnow traps baited with salmon roe. Nine species of fish were captured in Bristol Lake: cutthroat trout (*Oncorhynchus clarki*), rainbow trout (*Oncorhynchus mykiss*), mountain whitefish (*Prosopium williamsoni*), longnose sucker (*Catostomus catostomus*), coarsescale sucker (*Catostomus macrocheilus*), lake chub (*Couesius plumbeus*), redside shiner (*Richardsonius balteatus*), peamouth chub (*Mylocheilus caurinus*) and northern squawfish (*Ptycheilus oregonensis*). Gillnet catch per effort for cutthroat trout indicated intermediate population density for the species. Peamouth chub were very abundant, while rainbow trout, mountain whitefish, lake chub and redside shiner were captured in low numbers. Cutthroat trout maximum length was typical of Skeena region small lakes. The population condition factor was good.

The lake outlet stream and five inlet channels were examined for fisheries potential. A beaver dam at the lake outlet probably blocks fish passage except at higher flows. Salmonid spawning habitat occurs downstream of the lake and the size of the channel implies that it conveys high early season discharge, so it is likely the most important spawning stream for Bristol Lake trout populations. Four of the five inlet channels appeared to have low fisheries potential, though survey access was limited to flooded reaches near the lake.

The landscape of the Bristol Lake area is dominated by timber harvest. The lake supports a diverse fish community, probably because of its proximity to the Fulton River, Chapman and Fulton Lakes. Protection of the fish populations of Bristol Lake is not of particular concern at this time. Further industrial activity in the area will probably not occur within the next half-century. Despite its fishery potential, the lake is unlikely to attract significant recreational angling in the near future because of the condition of its surroundings. Special regulations or access management status are not recommended.

2. DATA ON FILE

Location	 Dissolved Oxygen Profile	
Physical Data	 Temperature Profile	
Bench Mark	 Netting Record	$\overline{\mathbf{v}}$
Terrain Features	 Lake Catch Summary	\checkmark
Access	 Fisheries Comments	\checkmark
Resorts & Campsites	 Individual Fish Data	\checkmark
Other Developments	 Fish Preserved	
Obstructions and Pollutions	 Stomach Analysis	
Special Restrictions	 Scale Reading	\checkmark
Aquatic Plants	 History of Previous Surveys	\checkmark
Wildlife Observations	 Location of Inventory Sites	\checkmark
Miscellaneous Comments	 Photograph Directory	\checkmark
Lake Drainage	 Appendices	\checkmark
Inlets/Outlets	 Bathymetric Reduction	
Water Chemistry	 Contour Map	

3. GEOGRAPHIC AND MORPHOLOGIC INFORMATION

3.1 Location

Location	41 km NE of the town of Smithers
Drainage	Bristol C \rightarrow Fulton R \rightarrow Babine L \rightarrow Babine R \rightarrow
	Skeena R \rightarrow Chatham Sound
Watershed Code	480-6972-657-01
Latitude / Longitude	55° 02′ / 126° 43′
U.T.M	09.645803.6100298(WCD)
Management Unit	06 - 08
N.T.S. Map #	93M/02 (1:50,000)
Forest Region	Prince Rupert
Forest District	Bulkley
Forest Cover Map	93M.007 (1:20,000)
Native Land Claims	Sekanni - Carrier, Natooten

Figure 1. Location of Bristol Lake. Inset map shows the location within the province of British Columbia. Map scale is approximately 1 : 250,000.

Figure 2. Bristol Lake, enlargement from air photo 30BCB92077 No. 109.

3.2 Physical Data

Elevation	814 m	Elevation Source	Casio ALT6100 altimeter
Water Surface Area	806795 m^2	Volume	1525720 m ³
Area Above 6 m Contour	806795 m^2	Flushing Rate	NA
Shoreline Perimeter	3859 m	Perimeter of Islands	NA
Maximum Depth	5.7 m	Mean Depth	1.93 m
Sounding Device	Lowrance X-15B	Lake Drainage Area	NA
Filterable Residue (T.S.S.)	< 4 mg/L	Secchi Disc	1.53 m

3.3 Benchmark

The benchmark was established in a 0.25 m (dbh) spruce on the south shore, 25 m E of the narrow outlet bay (Figure 2). An iron spike was placed in an orange circle painted on the tree trunk, 0.85 m above the current lake level.

3.4 Prior Surveys

A search of Skeena Region inventory files yielded no records for Bristol Lake, Bristol Creek or Fulton Lake. A 1952 inventory of Chapman Lake, located about 10 km downstream of Bristol Lake on the Fulton River, captured lake char, cutthroat trout, lake whitefish, peamouth chub and longnose sucker.

3.5 Lake Drainage

Quantitative characteristics of the stream surveys and fish collection can be found on the stream survey forms in Appendix B and the fish sampling data sheets in Appendix C. Numbering of the streams (S1, S2, etc.) in this section corresponds to labels on Figure 2 and other figures and tables in this report.

Six channels were examined.

- S1. Bristol Creek, WC 480-6972-657, outlet stream of Bristol Lake surveyed at UTM 09.645803.6100298 (WCD). A beaver dam at the lake outlet creates an immediate barrier to fish passage at lower flows. Channel dimensions suggest that it carries seasonally substantial flow, though at the time of survey flow was mostly subsurface. Passage is probably possible during higher flows. The stream may support salmonid spawning during spring and early summer high flows, as suitable gravels were present. Lakeward migration would be difficult for young fish at late season flows. An overnight set of two minnow traps captured one cutthroat trout and one longnose sucker.
- S2. Unnamed channel WC 480-6972-657-112, inlet to the south shore of Bristol Lake and surveyed at UTM 09.646200.6100500 (NAD27). At the time of the survey, the channel was watered but at low stage. A barrier 75 m upstream from the lake is likely passable at higher flows. The surveyed section did not bear salmonid spawning habitat, though gravel substrate may occur upstream of this reach. An overnight set of one minnow trap captured no fish.

- S3. Unnamed channel WC 480-6972-657-237, southern inlet to the east shore of Bristol Lake and surveyed at UTM 09.646500.6101200 (NAD27). This flooded channel traverses a sedge wetland to reach the lake. There are no barriers to fish migration, but the surveyed section bears only fine substrate unsuited for salmonid reproduction. An overnight set of one minnow trap capture a lake chub and two juvenile longnose suckers.
- S4. Bristol Creek, WC 480-6972-657, northern inlet to the east shore of Bristol Lake and surveyed at UTM 09.646500.6101300 (NAD27). The channel is flooded near the lake, traversing a sedge wetland at the lakeshore. The surveyed section bears only fine substrate unsuited for salmonid reproduction. Air photos show beaver dams on the channel upstream from the lake. It is unclear whether habitat suitable for salmonid reproduction is accessible from the lake. An overnight set of one minnow trap near the lake and another where the access road crosses the channel, 300 m upstream from the lake, each captured one longnose sucker juvenile.
- S5. Unnamed channel WC 480-6972-657-183, inlet to the northwest shore of Bristol Lake and surveyed at UTM 09.645800.6101500 (NAD27). The channel was completely dry upstream of the flooded portion adjacent to the lake. Flow is intermittent and the substrate is composed of fines unsuited for salmonid spawning. An overnight set of one minnow trap in the flooded section captured a single lake chub.
- S6. Unnamed channel, inlet to the west shore of Bristol Lake and surveyed at UTM 09.645600.6100800 (NAD27). The channel was completely dry upstream of a flooded section of length 15 m, adjacent to the lake. There are no barriers to fish passage, but flow is intermittent and the substrate is composed of fines unsuited for salmonid spawning.

3.6 Terrain and Vegetation

3.6.1 Immediate Shore

Much of the shallow substrate is composed of large cobble. Sand and compact clay are found in some areas, and organic fines occur near the inlets and adjacent sedge wetlands. More than 95 % of the shoreline consists of cutblocks or sedge wetlands.

3.6.2 Surrounding Country

The lake is located within a zone of low rolling terrain, width 4 - 5 km, extending from Babine Lake SW to the Fulton River. Distinctly steeper hills occur on either side of this zone. The area was originally forested by spruce, lodgepole pine and subalpine fir. Extensive cutblocks replanted in lodgepole pine now dominate the surroundings. The Babine Mountains are visible to the southwest, 10 km distant.

4. ACCESS, DEVELOPMENTS AND LAND USE

4.1 Access

The lake was accessed by road from the town of Smithers. All surfaces were in good 2WD condition. Odometer distances are cumulative from Smithers.

Beginning at the intesection of 5th Avenue and Main Street in Smithers:

1. Proceed SE on 5th Avenue (Highway 16) to odometer 6.2 km. Turn left onto Babine Lake Road.

- 2. Proceed E and NE to odometer 57.8 km. Turn left onto Nilkitkwa Forest Service Road.
- 3. Proceed NW and N to odometer 70.2 km, just past road marker 4011. Turn left onto an unmarked forestry road.
- 4. Proceed W to odometer 74.1 km. Turn left onto an unmarked forestry road.
- 5. Proceed S to near lake margin at odometer 75.1 km.

High clearance 4WD vehicles could likely reach the lake shore; 2WD access ends about 50 m before the lake.

4.2 Development and Land Use

4.2.1 Resorts and Campsites

None.

4.2.2 Mining Claims

Placer staking is not allowed in this area of the province. Omineca Mining Division four-post registration files for the locale showed no claims. No evidence of mineral exploration or mining activity was observed at the lake.

4.2.3 <u>Timber Harvest</u>

Bristol Lake is located within Supply Block B of the Bulkley TSA. The lake lies in the SE quadrant of a 25 km² area of which 80 % was logged between 1978 and 1984, due to a huge blowdown. Most of the cutblocks were replanted in lodgepole pine, from 1983 to 1987.

4.2.4 Waste Permits

A search of Skeena Region waste permit files yielded no records for Bristol Lake.

4.2.5 Water Permits

A search of Skeena Region water permit files yielded no records for Bristol Lake.

4.2.6 Obstructions and Pollutions

A beaver dam at the lake outlet is likely a barrier to fish passage only at lower flows. Beavers are currently active at the dam site. Dams are also located upstream of the lake on the Bristol Creek channel.

4.2.7 <u>Recreation Resource Inventory</u>

The latest Forest Service Recreation Resource Inventory for the Bristol Lake area was completed 11 November 1991. IGDS-format coding for the polygon which includes the lake:

A2 E3 -a c i D1 4

ROS status is thus "Roaded Resource Land".

4.2.8 Special Regulations and Restrictions

None known.

4.2.9 Comments

A derelict building is located on the east side of the final access road, at odometer 74.3 km.

5. FISH POPULATION SAMPLING

Details of fish population sampling in Bristol Lake and its inlets and outlet are given in Table 1. Raw data were recorded on RIC standard "Fish Collection Method Information Forms" and "Fish Collection Data Forms" which are reproduced in Appendix C.

Table 1. Fish sampling effort and catch for all methods used at Bristol Lake and its inlet-outlet streams, 08 - 10 October 1995. Loc gives the location where the gear was fished. L = Bristol Lake; S1 = Bristol Creek, WC 480-6972-657, outlet stream of Bristol Lake; S2 = unnamed inlet channel WC 480-6972-657-112; S3 = unnamed inlet channel WC 480-6972-657-237; S4 = Bristol Creek WC 460-1017-439-616 inlet to the east shore of Bristol Lake: S5 = unnamed channel WC 480-6972-657-183 inlet to the north shore of Bristol Lake; S6 = unnamed inlet to the west shore of Bristol Lake. G# gives the net or trap number. Meth refers to the collection method. GN = MOE / RIC standard experimental sinking gillnet, length 91.2 m and depth 2.4 m with panels (in order) of 25, 76, 51, 89, 38, and 64 mm mesh. The set was made perpendicular to shore with the smallest mesh at shore. MT = Gee-type minnow trap baited with salmon roe; VO = visual observation. Set and Haul are 24 hour clock times. Soak gives the time in minutes for which the gear was deployed. **Depth** unit is metres. The final six columns give the total catch by that gear, by species: CT = cutthroat trout, RT = cutthroat trout, MW = mountain whitefish, LSU = longnose sucker, CSU = coarsescale sucker, LKC = lake chub, PMC = peamouth chub, RSC = redside shiner, NSC = northern squawfish. Number of captured fish which were sampled for length (non-salmonids) or all appropriate parameters (salmonids) is listed in parentheses after the total number caught. Where no number is listed in parentheses, the entire catch was sampled.

Loc	Site	G #	Meth	Set	Haul	Soak	Depth	СТ	RT	MW	LSU	CSU	LKC	PMC	RSC	NSC
L	1	1	MT	2000	1335	1055	0.5						1			
L	1	2	MT	2000	1335	1055	1									
L	2	1	MT	1351	930	1179	2.5									
L	3	1	MT	1355	934	1179	2									
L	4	1	MT	1400	1003	1203	2									
L	5	1	GN	1745	751	846	0 - 2.5	31	1	5	11	12(11)		120 (30)	6	15
S 1	1	1	MT	1000	1057	1497	0.5				1					
S 1	1	2	MT	1000	1059	1499	0.5	1								
S2	1	1	MT	1045	1043	1438	0.7									
S3	1	1	MT	1215	1018	1323	0.7				2		1			
S4	1	1	MT	1225	1012	1307	0.5				1					
S4	2	1	MT	1540	1640	1500	1				1					
S5	1	1	MT	1445	947	1142	0.3						1			
S6	1	-	VO	1620	1621	1	-									

5.1 Fish Species Composition

Nine species of fish were captured in Bristol Lake and its watershed: cutthroat trout (*Oncorhynchus clarki*), rainbow trout (*Oncorhynchus mykiss*), mountain whitefish (*Prosopium williamsoni*), longnose sucker (*Catostomus catostomus*), coarsescale sucker (*Catostomus macrocheilus*), lake chub (*Couesius plumbeus*), redside shiner (*Richardsonius balteatus*), peamouth chub (*Mylocheilus caurinus*) and northern

squawfish (*Ptycheilus oregonensis*). Special status in MOE Region 6 is not currently attached to any of these species. The presence of salmonids in Bristol Lake requires that its low-gradient inlets and outlet be considered fish-bearing streams under the Forest Practices Code.

5.2 Relative Abundance

Gillnet catch per effort for cutthroat trout was 2.2 fish per net-hr, indicating intermediate population density for the species relative to other small lake populations. Peamouth chub were very abundant, while rainbow trout, mountain whitefish, lake chub and redside shiner were captured in low numbers (Table 1).

5.3 Size, Age, and Growth

Characteristics of the length distributions of fish captured by gillnet and minnow trap in Bristol Lake and its inlets and outlet, are shown in Table 2, Figure 3, and Figure 4. Due to gear selectivity, the samples are probably not representative of the true length structure of Bristol Lake fish populations. Cutthroat trout growth in Bristol Lake does not conform well to the Von Bertalanffy model (Figure 7). This may be for any combination of the following reasons: early ages follow a different growth trajectory, sample sizes are small, or the growth model is inappropriate for this population. Maximum fork length observed was typical to slightly high for Skeena region small lake cutthroat trout populations.

Table 2. Descriptive statistics for length distributions of fish species captured in Bristol Lake and its inlets and outlet stream, 08 - 10 October 1995. Fork lengths are given in mm. **CT(L)** = cutthroat trout captured in Bristol Lake, **CT(S)** = cutthroat trout captured in streams adjacent to Bristol Lake, **MW** = mountain whitefish, **RB** = rainbow trout, **CSU** = coarsescale sucker, **LSU(L)** = longnose sucker captured in Bristol Lake, **LSU(S)** = longnose sucker captured in streams adjacent to Bristol Lake, **NSC** = northern squawfish, **RSC** = redside shiner, **LKC(S)** = stream-captured lake chub.

Parameter	CT (L)	CT (S)	MW	RB	CSU	LSU(L)	LSU(S)	NSC	RSC	PMC	LKC(S)
Mean	269	145	276	296	418	277	78	287	108	197	70
Standard Error	9.0		16.4		12.9	6.3	16.2	13.4	1.4	2.3	17.0
Median	269		264		415	280	64	271	108	198	70
Mode	315		-		408	-	-	-	105	202	-
Standard Deviation	49.9		36.7		42.6	21.0	36.3	51.8	3.4	12.8	24.0
Minimum	133		235		336	221	47	238	105	171	53
Maximum	329		326		495	295	135	432	114	223	87
Count	31	1	5	1	11	11	5	15	6	30	2

5.3.1 Non-salmonid Species

Figure 3. Length-frequency histograms for catostomid species captured by gillnet in Bristol Lake. Length class width is 20 mm. X-axis class labels are the lower bounds for the length classes.

Figure 4. Length-frequency histograms for cyprinid species captured by gillnet in Bristol Lake. Length class width is 20 mm. X-axis class labels are the lower bounds for the length classes.

5.3.2 <u>Cutthroat Trout</u>

Figure 5. Length frequency distribution of cutthroat trout caught by lake gillnet (shaded bar areas) and stream minnow traps (open bar areas) at Bristol Lake, 08 - 10 October 1995. Length class width is 25 mm; the x-axis labels are the lower boundaries of length classes.

Figure 6. Age frequency histogram and length-at-age for cutthroat trout captured at Bristol Lake and its outlet, 08 - 10 October 1995. The solid line shows mean fork length at age, while the filled circles indicate lengths at age for individual fish.

Figure 7. Ford-Walford plot for cutthroat trout captured 08 - 10 October 1995, Bristol Lake and outlet. Lengths-at-age are mean values. The heavy line shows the least-squares regression of {length at age n+1} on {length at age n}. The first two points were excluded from the fit: early age classes appear to follow a different growth trajectory. Estimated terminal length (L_{∞}) occurs at the intersection of the regression line with the diagonal reference line; the parameters from the regression give k = .310 and $L_{\infty} = 324$ mm.

5.4 Sexual Maturity and Condition

5.4.1 Cutthroat Trout

Sample sizes are low, but cutthroat trout sexual maturity appears to occur by age 6 for females in Bristol Lake. Males mature between age 5 and 7 (Table 3). The population condition factor is high, relative to other small lake cutthroat trout populations in Skeena region during late summer (Figure 8).

	Fen	nales	Ма	ales	
Age	number	% mature	number	% mature	
3	1	0	1	0	
4	5	20	1	0	
5	5	20	2	50	
6	1	100	2	50	
7	1	100 3		67	
8	0	-	3	100	
TOTAL	13	31	12	58	

Table 3. Sexual maturity of Bristol Lake cutthroat trout, by age. For the total catch, the ratio of males to females was 0.92 : 1.

Figure 8. Estimated length - weight relationship for Bristol Lake cutthroat trout captured by all methods, 08 - 10 October 1995. Both length and weight are \log_{10} transformed. The GM regression equation is shown; the resulting estimate of Fulton's condition factor is thus $10^{-4.611} \cdot 10^5 = 2.45$. For comparison, mountain whitefish and rainbow trout captured in Bristol Lake are also shown. Plot symbols are W for mountain whitefish, **R** for rainbow trout and filled circles for cutthroat trout.

5.5 Other comments

Many of the peamouth chub captured at Bristol Lake were infected with very large tapeworms. The tapeworms were up to 0.5 cm in width and 20 cm in length, causing visible distension of the gut cavity.

6. LIMNOLOGICAL SAMPLING

Limnological sampling was conducted at midday, 10 October 1995, at the Bristol Lake limnology station labelled on Figure 2. Raw data and associated information were recorded on the RIC standard "Lake Biophysical Data Form" which is reproduced in Appendix D. Water samples were collected at 0.5 m and 5.0 m depths, apportioned into aliquots for general chemistry, metals, and dissolved metals analyses and shipped to Zenon Laboratories for processing. Zenon's records show that the Bristol Lake samples were received on 12 October 1995, within the 72 hr RIC standard time frame for water sample transport.

6.1 Stratification

The oxygen - temperature profile of Bristol Lake on 10 October 1995 is shown in Figure 9. The lake was thermally well mixed, with only slight near-bottom oxygen depletion.

Figure 9. Temperature and dissolved O_2 profiles for Bristol Lake, 10 October 1995. The sampling device was a YSI 57 temperature/oxygen meter. Sample interval was 0.5 m.

Table 4. Water chemistry parameters estimated by Zenon Laboratories. Samples were collected at the limnology station labelled in Figure 2. Each sample was collected by a single cast of a 3.2L non metallic Van Dorn bottle, 10 October 1995, and received by Zenon 12 October 1995. MDC = minimum detectable concentration for the analytic method.

Parameter	Shallow	Deep	Unit	MDC	Method
Time of Day	13:15	13:00	h	-	-
Depth	0.5	5	m	-	-
рН	6.5	6.5	pН	0.1	Automated pH Meter
Specific Conductance	38	37	uS/cm	1	Cond.Meter Siebold
Residue Nonfilterable (TSS)	< 4	< 4	mg/L	4	Grav; Subsamp Buch 105C
Hardness Total	25.3	25.4	mg/L		Calculated Result
Alkalinity Phen. 8.3	< 0.5	< 0.5	mg/L	0.5	Automated Electrometer
Alkalinity Total 4.5	19.8	19.6	mg/L	0.5	Automated Electrometer
Carbonate	< 0.5	< 0.5	mg/L		Calculated Result
Bicarbonate	24.1	23.9	mg/L		Calculated Result
Hydroxide	< 0.5	< 0.5	mg/L		Calculated Result
Total Kjeldahl Nitrogen	0.54	0.57	mg/L	0.04	HgSO4 Dig.Auto.Colour.
Total Nitrogen	0.54	0.57	mg/L		Calculated Result
Nitrate+Nitrite (N)	< 0.02	< 0.02	mg/L	0.02	Auto. Cadmium Reduction
Nitrate Nitrogen Dissolved	< 0.02	< 0.02	mg/L		Calculated Result
Nitrite Nitrogen	< 0.005	< 0.005	mg/L	0.005	Auto. Diazotization
Ortho-Phosphorus (P)	< 0.003	< 0.003	mg/L	0.003	Auto.Ascorbic Acid
Phosphorus Total Dissolved	0.007	0.008	mg/L	0.003	Dig.Auto.Ascorbic Acid
Phosphorus - Total	0.007 (1)	0.005 (1)	mg/L	0.003	Pres.Dig.Auto.Ascorbic A

6.2 Water Chemistry

Results of the general ions and metals analyses are given in Table 4 and Table 6. Bristol Lake is neutral with very low specific conductance. Phosphorus and nitrogen concentrations imply oligotrophy and low productivity. Estimated N : P ratios (Table 5) were much greater than 15 : 1, suggesting that phosphorus is limiting phytoplankton growth in Bristol Lake.

Table 5. Estimated nitrogen : phosphorus ratios for shallow (0.5 m) and deep (7.0 m) samples from Bristol Lake. All analyses were performed by Zenon Laboratories, except for calculation of ratios.

Parameter	Shallow	Deep	Method
Ortho-Phosphorus	< .003	< .003	Auto Ascorbic Acid
Phosphorus - Total	.007	.005	Pres. Dig. Auto Ascorbic Acid
Nitrogen - Total Kjehdahl	.54	.57	HgSO ₄ Dig. Auto. Colour.
Nitrogen - Total	.54	.57	Calculated result
N : P RATIO	77:1	114:1	Calculated result ¹

¹ N : P ratio estimated as: TOTAL NITROGEN / TOTAL PHOSPHORUS

Table 6. Metals concentrations estimated by Zenon Laboratories. Sample collection is described in the caption to Table 4. Dissolved metals aliquots were filtered by 0.45μ m cellulose acetate membrane syringe. All metals aliquots were fixed immediately after collection with 1 ml HNO₃. Analysis was performed using a Jarrell-Ash Model 61E (inductively coupled argon plasma analysis); "total metals" aliquots were subjected to HNO₃ digestion by Zenon. For values labelled with (1), the dissolved metal concentration was greater than the total concentration. MDC = minimum detectable concentration for the analytic method.

Parameter	Sh	allow	D	eep	Unit		MDC
	Total	Dissolved	Total	Dissolved		Total	Dissolved
Time of Day	13:15	13:15	13:00	13:00	h	-	-
Depth	0.5	0.5	5	5	m	-	-
Silver	< 0.03	- 1	< 0.03	-	mg/L	0.03	-
Aluminum	0.1	0.08	0.14	0.08	mg/L	0.06	0.02
Arsenic	< 0.04	< 0.04	< 0.04	< 0.04	mg/L	0.04	0.04
Boron	0.38	< 0.008	0.43	< 0.008	mg/L	0.04	0.008
Barium	0.019 (1)	0.02	0.020 (1)	0.02	mg/L	0.001	0.001
Beryllium	< 0.001	< 0.001	< 0.001	< 0.001	mg/L	0.001	0.001
Bismuth	< 0.02	< 0.02	< 0.02	< 0.02	mg/L	0.02	0.02
Calcium	6.14 (1)	6.55	6.42 (1)	6.58	mg/L	0.05	0.01
Cadmium	< 0.002	< 0.002	< 0.002	< 0.002	mg/L	0.002	0.002
Cobalt	< 0.004	< 0.003	< 0.004	< 0.003	mg/L	0.004	0.003
Chromium	< 0.002	< 0.002	0.002	< 0.002	mg/L	0.002	0.002
Copper	< 0.002	< 0.001	< 0.002	< 0.001	mg/L	0.002	0.001
Iron	0.17	0.16	0.19	0.159	mg/L	0.05	0.003
Potassium	0.4	< 0.4	0.7	< 0.4	mg/L	0.4	0.4
Magnesium	2.10 (1)	2.17	2.10 (1)	2.19	mg/L	0.02	0.02
Manganese	0.007	0.005	0.008	0.005	mg/L	0.002	0.002
Molybdenum	< 0.004	< 0.004	< 0.004	< 0.004	mg/L	0.004	0.004
Sodium	2.5	2.13	2.7	2.14	mg/L	0.4	0.01
Nickel	< 0.01	< 0.008	< 0.01	< 0.008	mg/L	0.01	0.008
Phosphorus	< 0.04	< 0.04	< 0.04	< 0.04	mg/L	0.04	0.04
Lead	< 0.03	< 0.02	< 0.03	< 0.02	mg/L	0.03	0.02
Sulphur	0.5	0.47	0.5	0.45	mg/L	0.1	0.03
Antimony	< 0.02	< 0.015	< 0.02	< 0.015	mg/L	0.02	0.015
Selenium	< 0.03	< 0.03	< 0.03	< 0.03	mg/L	0.03	0.03
Silicon	< 0.8	0.09	< 0.8	0.08	mg/L	0.8	0.03
Tin	< 0.02	< 0.02	< 0.02	< 0.02	mg/L	0.02	0.02
Strontium	0.042 (1)	0.045	0.044 (1)	0.045	mg/L	0.001	0.001
Tellurium	< 0.02	< 0.02	< 0.02	< 0.02	mg/L	0.02	0.02
Titanium	< 0.003	< 0.003	< 0.003	< 0.003	mg/L	0.003	0.003
Thallium	< 0.03	< 0.02	< 0.03	< 0.02	mg/L	0.03	0.02
Vanadium	< 0.003	< 0.003	< 0.003	< 0.003	mg/L	0.003	0.003
Zinc	< 0.01	0.002	0.01	0.002	mg/L	0.01	0.002
Zirconium	< 0.003	< 0.003	< 0.003	< 0.003	mg/L	0.003	0.003

7. OTHER FLORA AND FAUNA

7.1 Aquatic Plants

More than 65 % of lake surface is open water. Swamp horsetail and flooded sedges grow at the lake perimeter. Macrophyte beds visible on the air photo (Figure 2) are dominated by *Nuphar* sp.

7.2 Zooplankton

The Bristol Lake zooplankton community was numerically dominated by very small cyclopoid copepods and their immature stages. Small daphnids were also abundant. Macrozooplankton such as amphipods and chaoborids were not present in the plankton. The zooplankton species composition and size structure was suggestive of intense planktivory by the lake's salmonid and cyprinid populations.

Table 7. Zooplankton collected by horizontal tow of a 118 μ mesh conical plankton net, Bristol Lake offshore, 1230 h. on 10 October 1995. Net mouth diameter was 15 cm and net length was 1 m. Tow duration was 3 minutes, at velocity of 0.35 m/sec and depth between 0 and 2 m.

Species	No. / L	Max (mm)	Med
Daphnia sp.	14.2	1.9	1.2
<i>Holopedium</i> sp.	0.2	1	1
<i>Diaptomus</i> sp.	2.8	1.5	1.2
Diacyclops bicuspidatus	50.4	0.8	0.4
Nauplii	0.9	-	-

7.3 Waterfowl and Other Fauna

Beaver activity was most visible at the lake outlet. Geese were present during the survey.

8. MANAGEMENT COMMENTS

The landscape of the Bristol Lake area is dominated by timber harvest. The lake supports a diverse fish community, probably because of its proximity to the Fulton River and Chapman Lake. Protection of the fish populations of Bristol Lake is not of particular concern at this time. Further industrial activity in the area will probably not occur within the next half-century. Despite its fishery potential, the lake is unlikely to attract significant recreational angling in the near future because of the condition of its surroundings. Special regulations or access management status are not recommended.

9. PHOTOGRAPHS

Photograph 1 (cropped). Bristol Lake, view SW to Babine Mountains from lake center.

Photographs 2-3 (cropped). Bristol Lake, view NE from road access point at mid-W shore.

Photographs 4-7 (cropped). Top to bottom: coarsescale sucker, longnose sucker, redside shiner, peamouth chub; gillnet catch, Bristol Lake.

Photographs 8-10 (cropped). Rainbow trout, cutthroat trout, mountain whitefish; gillnet catch, Bristol Lake.

Photograph 11. Bristol Creek, WC 480-6972-657, outlet stream of Bristol Lake; beaver dam at the lake outlet.

Photograph 12. Unnamed channel, inlet to the west shore of Bristol Lake at UTM 09.645600.6100800 (NAD27).

Photograph 13. Unnamed channel WC 480-6972-657-237, southern inlet to the east shore of Bristol Lake at UTM 09.646500.6101200 (NAD27).

Photograph 14. Unnamed channel WC 480-6972-657-112, inlet to the south shore of Bristol Lake at UTM 09.646200.6100500 (NAD27).

APPENDIX A. ABBREVIATIONS AND OTHER NOTES

MOE = Ministry of Environment, Lands and Parks
RIC = Resource Inventory Committee
TSA = timber supply area
UTM = Universal Transverse Meracator
WC = Watershed Code
WCD = Watershed Code Dictionary
NTS = National Topographic Survey
NAD27 = North American Datum 1927

UTM values were derived from two sources:

- 1. For lakes, UTM at the outlet was obtained from the WCD, and this is noted after the UTM.
- 2. For streams, UTM for the surveyed reach was estimated from NTS 1:50,000 mapsheets, using interpolation. UTM datum year (i.e. NAD27) is recorded after the estimate. The exception is stream reaches at lake outlets. For these, UTM for the lake outlet is used, and referenced as WCD.

Native land claims information was derived from the following sources:

- 1. Northern Interior Negotiating Region, Statements of Intent, August 31 1995. Ministry of Forests Aboriginal Affairs Branch. Map scale 1 : 3,500,000.
- 2. "Native Land Claims in Skeena Region", February 1995. Ministry of Environment Lands and Parks. Map scale 1 : 1,500,000.

Fish growth rate and condition factor were estimated by methods detailed in:

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Canadian Bulletin of Fisheries and Aquatic Sciences No. 191.

APPENDIX B. STREAM SURVEY FORMS

								STR	EAN	I SURV	EY FOR	М												
Str	aam Nar	me (ga	z) Br	istol	с					(local)									Acce	ess			Meth	ho d
Wat	ershed	Code	480-	6972-6	57												ReachNo.	1	Lngth	(km)				
Loc	ation	Out]	let o	f Bris	to]	Lak	e				Map#	93	м/2				SiteNo.	1	LthSu	rv(m)		300		
											U.T.M.	09.	.64580	3.61	1002	98	FishCard	\odot	Ν	С	Fiel	dX	Hi	st.
Dat	e Y.M.I	9 O	5 1	0 0	9	Time	1000	Agency	C58	Crew	JB/JD		Photos				AirPhotos							
С		PA	RAME	TER		٧/	ALUE	METH				SP	ECIFIC	; DA	١TΑ						ов	TRI	јсти	ONS
	Ave. Cl	nan. W	idth (r	n)			6	т	6.0) 6.0	,										С	Ht(m)	ј Туре	Loc'n
	Ave. W	et. Wid	lth (m)			1.1	MS	. 25	5 2.0	0										C1	0.5	BD	0
	Ave.Ma	ax.Riffle	a Dept	th (cm)			4	MS	5	63	2												\Box'	
	Ave.Ma	ax.Pool	Dept	n (cm)			30	MS	30															
	Gradie	nt %					< 1	GE	С	BE	MATER	JAL		9	%	С	BAN	IKS						
	% Pool		Riffle	R	un	\Box	Other			Fines	clay,silt,sar	nd (<2	2mm)		10		Height(m)	%Ur	nstable				\Box	
	Side Ch	an.%		0 0-1	٥] 10-40	₩ >40	GE		Gravels	small (2-1€	3mm)			20		Texture	FG	LF	२				
		Area%		0 0-	5	5 -1	5🗙 >15	GE			large (16-6	34mm))		20		Confineme	:nt	EN	со	FC	OC	UC	N/A
	Debris	Stable	•%				75	GE			sm. cobble	e (64-1	128 mm)		20		Valley:Cha	nnel Ratio	0-2	2-!	55-	10	10+	N/A
	cov	ER: Tot	.al%							Larges	lge.cobble	(128-:	256mm)		20		Stag	e	Dry	C) №	<u>1</u> H	i Fic	boc
	Comp.	Dp.Pool	L.O.D.	Boulder		InVeg	OverVeg	Cutbank			boulder(>2	256mm	n)		10		Flood Sigr	ns Ht(m)		Brair	ded	Y		Ν
	sum100%									Bedroc	k				0		Bars(%)		pН			O2(r	.pm)	
	Crown Cl	iosure %		0		С	Aspect			D90(cm)	C	Con	mpaction	LM	лн		WaterTem	p(C) 7	Turb((cm)		Cond	I(25C)	
							DISCHARC	jE										RE	АСН	SYN	I BOI	L		
	Para	ameter		Value		Meth	ıod		Spe	cific Da	ita					l			(Fish	h)				l
	Wetted	Width (m)	.2400	0	MS	5																	
	Mean D	epth (m)	.0366	7	MS	5			.03 .	.02 .0	6								\square				•
	Mean V	elocity	(m/s)	.1500	0	F													!					
	Dischar	ge (m3/	s)	.0013	2	сa	lc									(Wid	ith:Valley/Ch	annel,Slop)e)				BedM	aterial

DFO / MOE

			FISH SUM M	ARY				STREAM/VALLEY CROSS-SECTION	1	
С	Species	No.	SizeRange(mm)	LifePhase	Use	Method/Ref	L	(Looking Downstream)	-	R
	LSU	1	135	J	R	MT		PLANIMETRIC VIEW]	
	СТ	1	135	J	R	MT				
								COMMENTS		
	Channe	el St	ability 🗌 ; D	ebris 🗌	; I	Management	Conc	cerns 🔄 ; Obstructions 🗌 ; Riparian Zone 🗌 ; Valley Wall Proce	esses 🗌	; Etc.
	C1 - 1	Bea	ver dam a	t lake	• 0 1	tlet for	ms a	a barrier at low flows; probably passable at		
	highe	r f	lows whic	h are	1i}	cely subs	tant	tial seasonally, based on channel width		
	At tin	ne	of survey	, flow	wa	as subsur	face	e at many points, so many parameters are not est	imable	
	No bar	rri	ers betwe	en bea	ve	dam and	Ful	ton River		
									Edited by:	JD
									DateYMD	960220

BedMateria

(Width:Valley/Channel,Slope)

DFO / MOE STREAM SURVEY FORM Stream Name (gaz) Unnamed Method (local) Access Watershed Code 480-6972-657-112 Lngth(km) ReachNo 1 Location Inlet to east side of south bay of Bristol L Map# 93M/2 300 1 LthSurv(m SiteNo Field X 09.646200.6100500 U.T.M. FishCard \odot N C Hist. Date Y.M.D C58 Crew 9 5 1 0 0 1035 JB/JD AirPhoto 9 Time Photos Agency С PARAMETER VALUE METH SPECIFIC DATA OBSTRUCTIONS Ave. Chan. Width (m) 0.65 1.05 1.25 MS C Ht(m) Type Loc'r 1 1.05 C1 .50 Ave. Wet. Width (m) 1 MS 0.65 1.25 F .08 Ave.Max.Riffle Depth (cm) Ave.Max.Pool Depth (cm) 27 MS 25 15 40 < 1 Gradient % GE С **BED MATERIAL** % С BANKS % Pool 2 0 Riffle 0 Run 8 0 Other 0 0 %Unstable GE Fines clay,silt,sand (<2mm) 100 Height(m) Side Chan.% 0 🗙 0-10 🗌 10-40 🔄 >40 🗌 GE Gravels small (2-16mm) 0 Texture FGLR 0🗙 0-5 5-15 >15 GE 0 Area% large (16-64mm) Confinement EN CO FC OC UC N/A Debris 0-2 2-5 5-10 10+ N/A Stable% sm. cobble (64-128mm) 0 Valley:Channel Ratio COVER: Total% 50 GE 0 Μ H Flood Ige.cobble (128-256mm) 0 Stage Dry Larges 0 Y Ν Dp.Pool L.O.D. Boulder Cutban Comp. InVeg OverVeg oulder(>256mm) Flood Signs Ht(m) Braided 0 sum100% 40 20 40 Bars(%) pН O2(ppm) Bedrock Crown Closure % D90(cm) С Compaction L M H WaterTemp(C) 5 Turb(cm) Cond(25C) Aspect DISCHARGE REACH SYM BOL (Fish) Parameter Value Method Specific Data 1.05000 MS Wetted Width (m) .10000 MS 0.12 0.13 0.11 0.04 Mean Depth (m)

.01000

.00105

F

calc

Mean Velocity (m/s)

Discharge (m3/s)

			FISH SUMM.	ARY			STREAM/VALLEY CROSS-SECTION]	
С	Species	No.	SizeRange(mm)	LifePhase	Use	Method/Ref	L (Looking Downstream)		R
	0					MT	PLANIMETRIC VIEW]	
							_		
							COMMENTS		
	Channe	el St	ability∐ ;D	ebris	; 1	Management	Concerns ; Obstructions ; Riparian Zone ; Valley Wall Proce	esses;	Etc.
	C1 - 1	Pro	bably not	a bar	rie	er at hig	her flows		
	No sa	lmo	nid spawn	ing gr	ave	el in the	surveyed reach		
								· ·	D
								Edited by: J	000000
								DateYMD	960220

STREAM SURVEY FORM Stream Name (gaz) Unnamed Method (local) Access Watershed Code 480-6972-657-237 Lngth(km) ReachNo 1 Location Southern of two inlets to northeast shore 93M/2 125 Map# 1 LthSurv(m SiteNo 09.646500.6101200 Field X of Bristol L U.T.M. FishCard \odot N C Hist. 9 Time C58 Crew Date Y.M.D 9 5 1 0 0 1210 JB/JD AirPhoto Photos Agency С PARAMETER VALUE METH SPECIFIC DATA OBSTRUCTIONS Ave. Chan. Width (m) 1.15 1.2 0.95 MS 1.3 С Ht(m) Type Loc'r Ave. Wet. Width (m) 1.15 MS 1.2 0.95 N/A 1.3 Ave.Max.Riffle Depth (cm) Ave.Max.Pool Depth (cm) 72 MS 63 84 70 < 1 Gradient % GE С **BED MATERIAL** % С BANKS % Pool 100 Riffle 0 0 Run 0 0 Other 0 0 %Unstable GE clay,silt,sand (<2mm) 100 Height(m) Fines Side Chan.% 0 🗙 0-10 🗌 10-40 🔄 >40 🗌 GE Gravels small (2-16mm) 0 Texture FGLR 0🗙 0-5 5-15 >15 GE 0 Area% large (16-64mm) Confinement EN CO FC OC UC N/A Debris 0-2 2-5 5-10 10+ N/A Stable% sm. cobble (64-128mm) 0 Valley:Channel Ratio COVER: Total% 25 GE Μ H Flood Ige.cobble (128-256mm) 0 Stage Dry Larges 0 Y Ν Dp.Pool L.O.D. Boulder Cutban Comp. InVeg OverVeg oulder(>256mm) Flood Signs Ht(m) Braided 75 15 0 sum100% 10 Bars(%) pН O2(ppm) Bedrock Crown Closure % 0 Aspect D90(cm) С Compaction L M H WaterTemp(C) 6 Turb(cm) Cond(25C) DISCHARGE REACH SYM BOL (Fish) Parameter Value Method Specific Data Wetted Width (m) Mean Depth (m) Mean Velocity (m/s) Discharge (m3/s) no discernible flow (Width:Valley/Channel,Slope) BedMateria

DFO / MOE

			FISH SUM M	ARY			STREAM/VALLEY CROSS-SECTION		
С	Species	No.	SizeRange(mm)	LifePhase	Use	Method/Ref	L (Looking Downstream)		R
	LKC	1	87	?	R	MT	PLANIMETRIC VIEW		
	LSU	2	52 - 64	J	R	MT			
							_		
							COMMENTS		
	Channe	el St	ability ; □	ebris	; 1	Management	Concerns ; Obstructions ; Riparian Zone ; Valley Wall Proc	esses 🔄 ; E	tC.
	Surve	y d	escribes	floode	d r	each of	this channel which traverses a sedge wetland to		
	reach	th	e lake sh	ore					
	No sa	lmo	nid spawn	ing gr	ave	els in su	rveyed section		
								Edited by: JD	
								DateYMD	60220

									STR	EAM	I SURV	EY FOR	М												
Str	eam Nai	me (gaz	:) B:	ristol							(local)									Acce	ess			Meth	od
Wat	tershed	l Code	480-	-6972-	657												Re	eachNo.	1	Lngth	n(km)				
Loc	ation	North	ern	of tw	o iı	nlets	to no	orth	least	sho	re	Map#	93	м/2			Sit	teNo.	1	LthSu	ırv(m)		100		
		of Br	isto	l L								U.T.M.	09.	64650	0.61	0130) 0 Fi	shCard	0	Ν	с	Fiel	d 🗙	His	st.
Dat	e Y.M.I	D 9	5 1	0 0	9	Time	1225		Agency	C58	Crew	JB/JD		Photos			Ai	rPhotos							
С		PA	RAMI	ETER		V	ALUE		METH				SP	ECIFIC	; DA	ΤA						овз	TRU	стіс	NS
	Ave. Cl	han. Wi	dth (m)			3.8	3	MS	5.0	3.0	3.5										С	Ht(m)	Туре	Loc'n
	Ave. W	et. Wid	th (m)			3.8	3	MS	5.0	3.0	3.5													
	Ave.Ma	ax.Riffle	Dep	th (cm)																					
	Ave.Ma	ax.Pool	Dept	h (cm)			1		MS	120	95	90													
	Gradie	nt %					< :	L	GE	С	BED	MATER	NAL		°,	6	С	BAN	NKS						
	% Pool	100	Riffle	0 0	Run	0 0	Other	0 0	GE		Fines	clay,silt,sa	nd (<2	2mm)		100	He	eight(m)	%	nstable					
	Side Ch	nan.%		0 🗙 0-	10] 10-40) >40		GE		Gravels	small (2-16	6mm)			0	Τe	exture	FG	LF	२				
		Area%		0 🗙 ()-5	5 -1	5 >15		GE			large (16-6	64 mm))		0	Co	onfineme	nt	EN	со	FC	OC	UC I	N/A
	Debris	Stable	%									sm. cobble	e (64-1	28mm)		0	Vá	alley:Cha	nnel Rati	0-2	2-5	5 5-	10 1	0+	N/A
	COV	ER: Tot	al%								Larges	lge.cobble	(128-2	256mm)		0		Stag	е	Dry	C) №	I H	Flo	od
	Comp.	Dp.Pool	L.O.D.	Bould	er	InVeg	OverVe	g	Cutbank			boulder(>2	256 mm	1)		0	Fl	ood Sigr	ns Ht(m)		Braic	ded	Y		Ν
	sum100%	75					10		15		Bedroc	k				0	Ba	ars(%)		pН			O2(p	om)	
	Crown C	losure %		0		С	Aspect				D90(cm)	С	Con	npaction	LM	н	WaterTemp(C) 6 Turb(cm)						Cond(25C)	
							DISCH	٩RGI	E										R	ACH	SYN	I BOL	-		
	Para	ameter		Value	Э	Meth	od			Spe	cific Da	ta								(Fis	sh)				
	Wetted	Width (r	n)																						
	Mean D	epth (m)																							
	Mean V	elocity (m/s)																						
	Dischar	ge (m3/	s)						I	10 0	liscer	nible	flo	w			(Width:'	Valley/Ch	annel,Slo	pe)	•			BedMa	terial

c Species No. SizeRange(mm) LifePhase Use Method/Ref L (Looking Downstream) R L LSU 2 47 - 92 J R MT PLANIMETRIC VIEW				FISH SUM M	ARY			STREAM/VALLEY CROSS-SECTION		
LSU 2 47 92 J R MT PLANIMETRIC VIEW Image: Strain	с	Species	No.	SizeRange(mm)	LifePhase	Use	Method/Ref	L (Looking Downstream)		R
Image:		LSU	2	47 - 92	J	R	MT	PLANIMETRIC VIEW		
Image:										
Image:										
Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: Stability in the shore Image: S										
Image: Stability in the shore Image: Stability in th										
Image: Section of the section Image: Section of the section No salmonid spawning gravels in surveyed section Image: Section of the section of the section Image: Section of the section of										
Image: Second Secon										
Image: Second Secon										
Image: Second Stability Survey describes flooded reach the lake shore No salmonid spawning gravels in surveyed section Image: Second Stability Image: Second Stabilit										
COMMENTS Channel Stability _ ; Debris _ ; Management Concerns _ ; Obstructions _ ; Riparian Zone _ ; Valley Wall Processes _ ; Etc. Survey describes flooded reach of this channel which traverses a sedge wetland to reach the lake shore No salmonid spawning gravels in surveyed section Enterday: JD Date YMD 960220										
Channel Stability; Debris; Management Concerns; Obstructions; Riparian Zone; Valley Wall Processes; Etc. Survey describes flooded reach of this channel which traverses a sedge wetland to reach the lake shore No salmonid spawning gravels in surveyed section Image: Construction in the section in the								COMMENTS		
Survey describes flooded reach of this channel which traverses a sedge wetland to reach the lake shore No salmonid spawning gravels in surveyed section 1 1 1 1 2 1 2 2 3 3 3 4 4 4 5 5 6 6 6 6 7 7 8 9 9 9 <td></td> <td>Channe</td> <td>el St</td> <td>ability 🗌 ; D</td> <td>ebris</td> <td>; 1</td> <td>Management</td> <td>Concerns 🔄 ; Obstructions 🗌 ; Riparian Zone 🗌 ; Valley Wall Proce</td> <td>sses 🗌</td> <td>; Etc.</td>		Channe	el St	ability 🗌 ; D	ebris	; 1	Management	Concerns 🔄 ; Obstructions 🗌 ; Riparian Zone 🗌 ; Valley Wall Proce	sses 🗌	; Etc.
<pre>reach the lake shore reach the lake shore reac</pre>		Surve	y d	escribes	floode	d 1	each of	this channel which traverses a sedge wetland to		
Image: Section Image: Section Image: Section Image: Sec		reach	th	e lake sh	ore					
No salmonid spawning gravels in surveyed section Image: Spawning gravels in surveyed section										
Image: Control of the second secon		No sa	lmo	nid spawn	ing gr	ave	els in su	rveyed section		
Image: Control of the second secon										
Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the sys										
Editedby: JD Date YMD 960220										
Edited by: JD Date YMD 960220										
Edited by: JD Date YMD 960220										
Date YMD 960220									Edited by:	JD
									DateYMD	960220

DFO / MOE STREAM SURVEY FORM

DFO / MOE STREAM SURVEY FORM

											011		10010														
Stre	am Nar	me (g:	az)	Un	named								(local)									Ac	cess			Meth	۱od
Wat	ershed	Code	48	30-	6972-	657-	-183	3												ReachNo.	1	Lnç	gth(km)				
Loc	ation	Inl	et	to	NW sł	nore	of	i Br	risto	1 I				Map#	93	м/2			1	SiteNo.	1	Lth	nSurv(m))	100		
														U.T.M.	09.	64580	0.61	0150	0	FishCard	\odot	Ν	с	Fiel	dX	His	st.
Date	e Y.M.I	؟ C) 5	1	0 0	9	Time		1445		Agency	C58	Crew	JB/JD		Photos			1	AirPhotos							
С		P/	ARA	ME	TER			VAL	LUE		METH				SP	ECIFIC	; DA	TA						овя	TRU	стіс	ONS
	Ave. Cl	nan. V	/idtl	n (n	n)				0.8		MS	0.7	70.9											С	Ht(m)	Туре	Loc'n
	Ave. W	et. Wi	dth	(m))				0.8		MS	0.7	70.9														
	Ave.Ma	ax.Riff	le D	ept	.h (cm)																						
	Ave.Ma	ax.Poc) De	pth	1 (cm)				37		MS	29	45														
	Gradie	nt %							< 1		GE	С	BED	MATER	IAL		9	%	С	BAN	IKS						
	% Pool	100	Rif	ffle	0 0	Run	0	0 0	ther 0	0	GE		Fines	clay,silt,sar	nd (<2	?mm)		100	I	Height(m)	%U	nstab	ole				
	Side Ch	ian.%	Γ		0 🗙 0-	10] 10-	40	>40		GE		Gravels	small (2-16	mm)			0	-	Texture	FG	L	R				
	,	Area%	Ē		0 🗙 0	-5	5 -	-15	>15		GE			large (16-6	4 mm))		0	(Confineme	nt	EN	4 CO	FC	OC	UC	N/A
	Debris	Stab	e%											sm. cobble	(64-1	28mm)		0	,	Valley:Char	nnel Ratio	o 0-	-2 2-	5 5-	10	10+	N/A
	COV	ER: To	tal%	6					25		GE		Larges	lge.cobble	(128-;	256mm)		0		Stag	e	6	ry) I	LN	I H	Flo	bod
	Comp.	Dp.Poo	I L.O).D.	Boulde	ər	InVeg	1	OverVeç	1	Cutbank			boulder(>2	56 mm	1)		0		Flood Sign	nsHt(m)		Bra	ided	Y		N
	sum100%	60							20		20		Bedroc	k				0	ſ	Bars(%)		pł	н		O2(p	pm)	
	Crown Cl	losure %	6		0	ľ	с	Α	Aspect				D90(cm)	С	Con	npaction	LM	н	,	WaterTemp	p(C) 6	Tu	ırb(cm))	Cond	(25C)	
								D	JISCHA	RG	E										RE	AC	HSY	M BOI	_		
	Para	ameter			Value	<u>ڊ</u>	Me	ethor	d			Spe	ecific Da	ta								((Fish)				ļ
	Wetted	Width	(m)																								_
	Mean Dr	epth (r	n)																								
	Mean V	elocity	(m/:	s)									_														
	Dischar	ge (m?	3/s)		1 1		1			1	r	no (discer	nible	flo	w		C	Widt	h:Valley/Ch	annel,Slo	pe)	•			BedMa	aterial

			FISH SUM M	ARY			STREAM/VALLEY CROSS-SECTION]	
С	Species	No.	SizeRange(mm)	LifePhase	Use	Method/Ref	L (Looking Downstream)		R
	LKC	1	53	J	R	MT	PLANIMETRIC VIEW]	
							COMMENTS		
	Channe	el St	ability 🗌 ; D	ebris	; N	Management	Concerns 🔄 ; Obstructions 🗌 ; Riparian Zone 🗌 ; Valley Wall Proce	esses	; Etc.
	Channe	əl	was water	ed onl	уі	n the la	st 75 m adjacent to the lake; dry above that point		
								Edited by:	JD
								DateYMD	960220
								DateYMD	300220

BedMateria

DFO / MOE STREAM SURVEY FORM Stream Name (gaz) Unnamed Method (local) Access Watershed Code Lngth(km) ReachNo 1 Inlet to W bay of Bristol L 93M/2 Location Map# 1 LthSurv(m) 50 SiteNo 09.645600.6100800 Field X U.T.M. FishCard \odot N C Hist. Date Y.M.D 9 5 1 0 0 9 Time 1620 C58 Crew JB/JD AirPhoto Photos Agency С PARAMETER VALUE METH SPECIFIC DATA OBSTRUCTIONS Ave. Chan. Width (m) 0.8 0.4 1.2 1.5 0.9 MS 0.4 C Ht(m) Type Loc'r Ave. Wet. Width (m) 0.9 MS 0.4 0.8 0.4 1.2 1.5 Ave.Max.Riffle Depth (cm) Ave.Max.Pool Depth (cm) 18 MS 12 23 < 1 Gradient % GE С **BED MATERIAL** % С BANKS % Pool 100 Riffle 0 0 Run 0 0 Other 0 0 GE Fines clay,silt,sand (<2mm) 100 Height(m) %Unstable Side Chan.% 0 🗙 0-10 🗌 10-40 🗌 >40 🗌 GE Gravels small (2-16mm) 0 Texture FGLR 0🗙 0-5 5-15 >15 GE 0 Area% large (16-64mm) Confinement EN CO FC OC UC N/A Debris 0-2 2-5 5-10 10+ N/A Stable% sm. cobble (64-128mm) 0 Valley:Channel Ratio COVER: Total% 40 Flood Ige.cobble (128-256mm) 0 Stage Dry L 0 Н Larges 0 Y Ν Dp.Pool L.O.D. Boulder Cutban Braided Comp. InVeg OverVeg oulder(>256mm) Flood Signs Ht(m) 25 0 sum100% 25 25 25 Bars(%) pН O2(ppm) Bedrock 0 - 100 Crown Closure % Aspect D90(cm) С Compaction L M H WaterTemp(C) Turb(cm) Cond(25C) DISCHARGE REACH SYM BOL (Fish) Parameter Value Method Specific Data Wetted Width (m) Mean Depth (m) Mean Velocity (m/s)

no flow

(Width:Valley/Channel,Slope)

Discharge (m3/s)

			FISH SUM M.	ARY			STREAM/VALLEY CROSS-SECTION]	
С	Species	No.	SizeRange(mm)	LifePhase	Use	Method/Ref	L (Looking Downstream)		R
		0				vo	PLANIMETRIC VIEW]	
							COMMENTS		
	Channe	el St	ability;D	ebris	; 1	Management	Concerns 📋 ; Obstructions 📋 ; Riparian Zone 📋 ; Valley Wall Proce	sses 🔄 ;	Etc.
	Channe	el	is floode	d by l	ake	e, watere	d only to 15 m upstream of lakeshore		
	Dry al	bov	e that po	int					
								Edited by:	ID
								DateYMD	960220

APPENDIX C. FISH SAMPLING FORMS

FISH COLLECTION DATA FORM

Card <u>01</u>of <u>02</u>

Date (yy/mm/dd):	95/10/08	Agency: C58	Crew: JB/JD
Gazetted Name:	Bristol	Alias:	UTM: 09.645803.6100298
Lake/Stream/Wetland	Lake	Location:	(source: WCD)
Sequence No.	01	Weather:	
Watershed code:	480-6972-657	Reach #:	

	Area :	sampled:		_	Air tmp:		_	Wtr tmp :		_	EC :	
-	(m2)			1	(C)	1	r –	(0)	1	1	(ms/cm)	
Site	No.	Capture	Pass # or	Species	Mark or	Length	Weight	Scale	Sex	M aturity	Activity	Comments
		Method	trap/net #	(code)	Tag No.	FL (mm)	(g)	sample #	(code)	(code)	(code)	
(6	GN	1	СТ	-	315	300	2	М	М	R	regen
(6	GN	1	СТ	-	298	290	3	М	I	R	age 7+
(6	GN	1	СТ	-	276	220	4	F	М	R	age 5+
(6	GN	1	СТ	-	237	150	5	М	I	R	age 3+
(6	GN	1	СТ	-	307	300	6	М	М	R	regen
(6	GN	1	СТ	-	322	290	7	F	М	R	age 7+
(6	GN	1	СТ	-	320	350	8	М	М	R	regen
(6	GN	1	СТ	-	329	410	9	М	М	R	age 8+
(6	GN	1	СТ	-	240	160	10	М	М	R	age 5+
(6	GN	1	СТ	-	315	340	11	М	М	R	age 7+
(6	GN	1	СТ	-	269	220	12	F	М	R	age 4+
(6	GN	1	СТ	-	297	300	13	М	М	R	age 6+
(6	GN	1	СТ	-	213	110	14	F	I	R	regen
(6	GN	1	СТ	-	319	370	15	М	М	R	age 7+
(6	GN	1	СТ	-	308	300	16	М	I	R	age 6+
(6	GN	1	СТ	-	233	140	17	F	I	R	age 4+
(6	GN	1	СТ	-	232	140	18	F	I	R	age 4+
(6	GN	1	СТ	-	250	180	19	М	I	R	age 4+
(6	GN	1	СТ	-	253	160	20	F	I	R	age 4+
(6	GN	1	СТ	-	310	350	21	М	М	R	regen
(6	GN	1	СТ	-	324	360	22	М	М	R	age 8+
(6	GN	1	СТ	-	265	220	23	F	I	R	age 5+
(6	GN	1	СТ	-	261	200	24	F	I	R	age 5+
(6	GN	1	СТ	-	240	160	25	F	I	R	age 4+
(6	GN	1	СТ	-	301	310	26	F	М	R	age 6+

FISH COLLECTION DATA FORM

Card <u>02</u> of <u>02</u>

Date (yy/mm/dd):	95/10/08	Agency: C58	C rew:	JB/JD
Gazetted Name:	Bristol	Alias:	UTM:	09.645803.6100298
Lake/Stream/Wetland	Lake	Location:	(so	urce: WCD)
Sequence No.	01	Weather:		
Watershed code:	480-6972-657	Reach #:		

Ar	ea sampled:		_	Air tmp:		_	Wtr tmp :		_	EC :		
(m	2)			(C)			(C)			(ms/cm)		
Site No	. Capture	Pass # or	Species	Mark or	Length	Weight	Scale	Sex	M aturity	Activity	Comme	nts
	Method	trap/net #	(code)	Tag No.	FL (mm)	(g)	sample #	(code)	(code)	(code)		
6	GN	1	СТ	-	241	170	27	F	I	R	age	5+
6	GN	1	СТ	-	319	330	28	М	М	R	age	8+
6	GN	1	СТ	-	235	140	29	F	I	R	age	5+
6	GN	1	СТ	-	133	27	30	F	I	R	age	3+
6	GN	1	СТ	-	235	150	31	М	I	R	age	5+
6	GN	1	RB	-	296	340	1	F	М	R	age	9+
6	GN	1	MW	-	264	260	1	F	М	R	age	8+
6	GN	1	MW	-	300	370	2	F	М	R	age	11+
6	GN	1	MW	-	326	560	3	F	М	R	age	8+
6	GN	1	MW	-	254	250	4	F	М	R	age	6+
6	GN	1	MW	-	235	160	5	F	I	R	age	7+

FISH COLLECTION DATA FORM

Card <u>01</u>of <u>01</u>

Date (yy/mm/dd):	95/10/08	Agency: C58	Crew:	JB/JD
Gazetted Name:	Bristol C	Alias:	UTM:	09.645803.6100298
Lake/Stream/Wetland	Stream	Location:	(so	urce: WCD)
Sequence No.	00	Weather:		
Watershed code:	480-6972-657	Reach #: 1	_	

	Area (m2)	sampled:		-	Air tmp: (C)		-	Wtrtmp: (C)		-	EC : (ms/cm)	
Site	No.	Capture	Pass # or	Species	Mark or	Length	Weight	Scale	Sex	M aturity	Activity	Comments
		Method	trap/net #	(code)	Tag No.	FL (mm)	(g)	sample #	(code)	(code)	(code)	
	1	MT	2	СТ	-	145	-	1	-	-	R	age 3+

Card <u>01</u>of <u>01</u>

Date (yy/mm/dd):95/10/08Gazetted Name:BristolLake/Stream/WetlandLakeSequence No.01Watershed code:480-6972-657

Agency: C58 Alias: Location: Weather: Reach #:

Crew: JB/JD UTM: 09.645803.6100298 (source: WCD)

Area	sampled:		_	Airtmp		_	Wtr tmp		_	EC :		_	
(m2)	1	1	1	(C)	-	1	(C)		1	(ms/cm)	1	1	1
Site	Capture	Pass # or	Species	Length									
No.	Method	trap/net #	(code)	FL (mm)									
6	GN	1	PMC	207	223	205	202	195	172	181	200	195	212
6	GN	1	PMC	212	202	221	191	192	210	185	192	202	202
6	GN	1	PMC	180	171	197	198	185	201	181	203	192	188
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	PMC	na									
6	GN	1	RSC	109	114	105	110	105	107				
6	GN	1	CSU	458	400	336	435	452	415	374	420	408	495
6	GN	1	CSU	408	na								
6	GN	1	NSC	302	243	271	238	289	432	260	327	248	283
6	GN	1	NSC	250	266	273	360	265					
6	GN	1	LSU	284	272	264	292	294	295	278	277	280	221
6	GN	1	LSU	291									
1	MT	1	LKC	65									

Card <u>01</u>of <u>01</u>

95/10/08 Date (yy/mm/dd): Bristol C Gazetted Name: Lake/Stream/Wetland Stream 00 Sequence No. Watershed code: 480-6972-657 Agency: C58 Alias: Location: Weather: Reach#: 1

Crew: JB/JD **UTM**: 09.645803.6100298 (source: WCD)

Area	sampled:		_	Airtmp		_	Wtr tmp	:	_	EC :		_	
(m2)				(C)			(C)			(ms/cm)			
Site	Capture	Pass # or	Species	Length									
No.	Method	trap/net #	(code)	FL (mm)									
1	МT	1	LSU	135									

Card <u>01</u>of <u>01</u>

95/10/08 Date (yy/mm/dd): Gazetted Name: Unnamed Lake/Stream/Wetland Stream 00 Sequence No. Watershed code: 480-6972-657-237 Agency: C58 Alias: Location: Weather: Reach#: 1

Crew: JB/JD UTM: 09.646500.6101200 (source: NAD27)

Area	sampled:		_	Air tmp		_	Wtr tmp	:	-	EC :		-	
(m2)	L	<u> </u>		(0)	L	L	(0)	I		(ins/cm)	L		
Site	Capture	Pass # or	Species	Length	Length	Length	Length						
No.	Method	trap/net #	(code)	FL (mm)	FL (mm)	FL (mm)	FL (mm)						
1	MT	1	LKC	87									
1	MT	1	LSU	52	64								

Card <u>01</u>of <u>01</u>

95/10/08 Date (yy/mm/dd): Gazetted Name: Unnamed Lake/Stream/Wetland Stream 00 Sequence No. Watershed code: 480-6972-657-237 Agency: C58 Alias: Location: Weather: Reach#: 1

Crew: JB/JD UTM: 09.646500.6101200 (source: NAD27)

Area	sampled:		_	Air tmp		_	Wtr tmp	:	-	EC :		-	
(m2)	L	<u> </u>		(0)	L	L	(0)	L		(ins/cm)	L		
Site	Capture	Pass # or	Species	Length	Length	Length	Length						
No.	Method	trap/net #	(code)	FL (mm)	FL (mm)	FL (mm)	FL (mm)						
1	MT	1	LKC	87									
1	MT	1	LSU	52	64								

Card <u>01</u>of <u>01</u>

95/10/08 Date (yy/mm/dd): Gazetted Name: Unnamed Lake/Stream/Wetland Stream 00 Sequence No. Watershed code: 480-6972-657-183 Agency: C58 Alias: Location: Weather: Reach#: 1

Crew: JB/JD UTM: 09.645800.6101500 (source: NAD27)

Area	sampled:		_	Air tmp		_	Wtr tmp	:	-	EC :		-	
(m2)	1	1	<u> </u>	(C)	r –	r	(C)	r	r	(ms/cm)	r	1	1
Site	Capture	Pass # or	Species	Length									
No.	Method	trap/net #	(code)	FL (mm)									
1	МT	1	LKC	53									

Date (yy/mm/dd):	95/10/08; 95/10/09
Gazetted Name:	Bristol
Lake/Stream/Wetland	Lake
Sequence No.	01
Watershed code:	480-6972-657

Agency: C58 Alias: Location: Weather: Reach #:

Crew: JB/JD

UTM: 09.645803.6100298

(source: WCD)

Date	Sample Site	Pass # or	Capture	Time In	Time Out	Sampling	Depth
(yy/mm/dd)	No.	trap/net #	Method	(24 hr clock)	(24 hr clock)	time (min)	(m)
95/10/08	1	1	MT	2000	1335	1055	0.5
95/10/08	1	2	МТ	2000	1335	1055	1
95/10/09	2	1	МТ	1351	0930	1179	2.5
95/10/09	3	1	МТ	1355	0934	1179	2
95/10/09	4	1	MT	1400	1003	1203	2
95/10/09	5	1	GN	1745	0751	846	0 - 2.5

Comments : Minnow traps and gillnet set over one night. Date recorded is date of

Date (yy/mm/dd):	95/10/09	Agency: C58	Crew: JB/JD
Gazetted Name:	Bristol C	Alias:	UTM: 09.645803.6100298
Lake/Stream/Wetland	Stream	Location:	(source: WCD)
Sequence No.	00	Weather:	
Watershed code:	480-6972-657	Reach #: 1	

Date	Sample Site	Pass # or	Capture	Time In	Time Out	Sampling	Depth
(yy/mm/dd)	No.	trap/net #	Method	(24 hr clock)	(24 hr clock)	time (min)	(m)
95/10/09	1	1	MT	1000	1057	1497	0.5
95/10/09	1	2	MT	1000	1059	1499	0.5
	_						
	_						
	_						

Date (yy/mm/dd):	95/10/09	Agency:	C58	Crew:	JB/JD	1
Gazetted Name:	Unnamed	Alias:		UTM:	09.6462	00.6100500
Lake/Stream/Wetland	Stream	Location:		(so	urce:	NAD27)
Sequence No.	0 0	Weather:				
Watershed code:	480-6972-657	Reach #:	1			

Date	Sample Site	Pass # or	Capture	Time In	Time Out	Sampling	Depth
(yy/mm/dd)	No.	trap/net #	Method	(24 hr clock)	(24 hr clock)	time (min)	(m)
95/10/09	1	1	MT	1045	1043	1438	0.7
1	1						

Date (yy/mm/dd):	95/10/09	Agency: C58	Crew: JB/JD
Gazetted Name:	Unnamed	Alias:	UTM: 09.646500.6101200
Lake/Stream/Wetland	Stream	Location:	(source: NAD27)
Sequence No.	00	Weather:	
Watershed code:	480-6972-657	Reach #: 1	

Date	Sample Site	Pass # or	Capture	Time In	Time Out	Sampling	Depth
(yy/mm/dd)	No.	trap/net #	Method	(24 hr clock)	(24 hr clock)	time (min)	(m)
95/10/09	1	1	MT	1215	1018	1323	0.7

Date (yy/mm/dd):	95/10/09	Agency:	C58	Crew:	JB/JD	
Gazetted Name:	Bristol C	Alias:		UTM:	09.64650	0.6101300
Lake/Stream/Wetland	Stream	Location:		(so	urce:	NAD27)
Sequence No.	00	Weather:				
Watershed code:	480-6972-657	Reach #:	1			

Date	Sample Site	Pass # or	Capture	Time In	Time Out	Sampling	Depth
(yy/mm/dd)	No.	trap/net #	Method	(24 hr clock)	(24 hr clock)	time (min)	(m)
95/10/09	1	1	MT	1225	1012	1307	0.5
95/10/09	2	1	МТ	1540	1640	1500	1
	_						
ļ							
							1

Date (yy/mm/dd):	95/10/09	Agency: C58	Crew: JB/JD
Gazetted Name:	Unnamed	Alias:	UTM: 09.645800.6101500
Lake/Stream/Wetland	Stream	Location:	(source: NAD27)
Sequence No.	00	Weather:	
Watershed code:	480-6972-657	Reach #: 1	

Date	Sample Site	Pass # or trap/net #	Capture Method	Time In	Time Out	Sampling	Depth (m)
95/10/09	1	1	MT	1445	0947	1142	0.3
	_						
	_						
	-						

Date (yy/mm/dd):	95/10/09	A gency:	C58	Crew:	JB/JD	
Gazetted Name:	Unnamed	Alias:		UTM:	09-64560	00-6100800
Lake/Stream/Wetland	Stream	Location:		(so	urce:	NAD27)
Sequence No.	0 0	Weather:				
Watershed code:		Reach #:	1			

Date	Sample Site	Pass # or	Capture	Time In	Time Out	Sampling	Depth
(yy/mm/dd)	No.	trap/net #	Method	(24 hr clock)	(24 hr clock)	time (min)	(m)
95/10/09	1	-	VO	1620	1621	1	-

APPENDIX D. LIMNOLOGICAL SAMPLING FORMS

Lake Biophysical	Data Form				
Date (vv/mm/dd):	95/10/10 : 1	245h	Crew:	JB/JD	
Date (yy/inin/ad).		•		02,02	-
Site ID					
Watershed code:	480-6972-657	_	Sequence No.:		01
Gazetted name:	Bristol	-	Alias:		
FW Region:	06	-	UTM (Zone, Eastin	ng, Northing):	09.645803.6100298
Management Unit:	08	_	NTS Map No.:		93 M/02
Biophysical					
Biogeo Zone	SBSmc	_			
Benchmark (Y/N)	Y	-			
Benchmark details:	see Comments	-			
Nutrient Status					
SEAM No.:	-	Limno Station No:	1		
Secchi depth (m)	1.53	H2S (mg/l)	N/A		
Other samples taken:	Y	H2S comments	no odor		
		TDS method	N/A		
		DO method	YSI 57		
		TEMP method	YSI 57		
		Alkalinity			
Field Conditions					
wind valacity (km/h)	to 8	wind direction:	S	air tomp (c):	7
cloud cover (/10 O.C.)	99%	surface condition:	ripple	_all temp: (c): water colour:	lt. vellow
			1100		101 101100
Development					
, MOF rec sites (Y/N)	N	Resort cmpsts (Y/N)	N	Residences (Y/N	Ν
MOF campsites (Y/N)	N	Resorts (Y/N)	N	Co. Rec facilities	N
Parks campgrds (Y/N)	N	Resort cabins (Y/N)	Ν		
		-		_	
Recreation					
ROS	4	Biophys features:		Biophys sub-feat	t.:
Inlets/Outlets	see Stream Sur	vey Card for mandat	ory fields		
Distaniast					
Biological	11 37		E.L.M.	and Devent	
rish Card attached (Y/		-	risn. Man. Com.	see keport	-
Aquatic birday		-	Repuies:	FW clame	-
Aqualic birus:		-	Aquatic Plante	see Comments	-
פוומומווק וווק	11/ 11	-	nyualio rialito.		-
Comments:					
Observed beaver,	raven, moose	droppings			
, Benchmark (spike	in center of	orange circle),	0.85 m above	present lake l	evel in
25 cm dbh spruce	tree 25 m E c	of lake outlet.		-	
-					

Lake Survey Profile Data

Sequence number:

Limnology station:

1

01

Date : 95/10/10 : 1245h (yy/mm/dd)

		1		1
Depth	D.O.	Temp	TDS	Conduct.
(m)	(mg/l)	(C)	(ppm)	(umhos/cm)
surface	9.4	7.8		
0.5	9.4	7.8		
1.0	9.4	7.8		
1.5	9.4	7.8		
2.0	9.4	7.8		
2.5	9.4	7.8		
3.0	9.4	7.8		
3.5	9.4	7.8		
4.0	9.4	7.8		
4.5	9.4	7.8		
5.0	9.35	7.8		
5.5	9.15	7.8		
6.0				
6.5				
7.0				
7.5				
8.0				
8.5				
9.0				
9.5				
10.0				
10.5				
11.0				
11.5				
12.0				
12.5				
13.0				
13.5				
14.0				
14.5				
15.0				
15.5				
16.0				
16.5				
17.0				
17.5				
18.0				
18.5				
19.0				
19.5				
20.0				

Depth	D.O.	Temp	TDS	Conduct.
(m)	(mg/l)	(c)	(ppm)	(umhos/cm)
20.5	,		, , , , , , , , , , , , , , , , , , ,	, ,
21.0				
21.5				
22.0				
22.5				
23.0				
23.5				
24.0				
24.5				
25.0				
25.5				
26.0				
26.5				
27.0				
27.5				
28.0				
28.5				
29.0				
29.5				
30.0				
30.5				
31.0				
31.5				
32.0				
32.5				
33.0				
33.5				
34.0				
34.5				
35.0				
35.5				
36.0				
36.5				
37.0				
37.5				
38.0				
38.5				
39.0				
39.5				
40.0				

APPENDIX E. PHOTOGRAPH / NEGATIVE DIRECTORY				
Negative	Photo #	Description		

#	(report)	1
L12 - 1		Bristol Creek, stream S1, downstream of Bristol Lake outlet
L12 - 2	11	Bristol Creek, stream S1, beaver dam at lake outlet
L12 - 3		view from SE lake shore toward NNW
L12 - 4		Babine Mountains from SE corner of Bristol Lake
L12 - 5		Bristol Lake and Babine Mountains from E shore of Bristol Lake
L12 - 6	13	unnamed stream S3, WC 480-6972-657-237, southern inlet to the E shore of Bristol Lake
L12 - 7	15	unnamed stream S5, WC 480-6972-657-183, inlet to the NW shore of Bristol Lake
L12 - 8		unnamed stream S6, inlet to the W shore of Bristol Lake
L12 - 9	12	unnamed stream S6, inlet to the W shore of Bristol Lake
L12 - 10	4	coarsescale (largescale) sucker, gillnet catch
L12 - 11	5	longnose sucker, gillnet catch
L12 - 12		mountain whitefish, gillnet catch
L12 - 13	8	rainbow tout, gillnet catch
L12 - 14		cutthroat trout, gillnet catch
L12 - 15	9	cutthroat trout, gillnet catch
L12 - 16		Bristol Creek, stream S1, downstream of Bristol Lake outlet
L12 - 17	14	unnamed stream S2, WC 480-6972-657-112, inlet to the S shore of Bristol Lake
L12 - 18	16	Bristol Creek, stream S4, northern inlet to the E shore of Bristol Lake
L12 - 19		start of 180° panorama, taken from 100 m offshore of the Bristol Creek (S4) inlet
		delta; view to SE
L12 - 20		panorama, continued; view to SSE
L12 - 21		panorama, continued; view to S
L12 - 22		panorama, continued; view to SSW
L12 - 23		panorama, continued; view to WSW
L12 - 24	1	panorama, continued; view to W
L12 - 25		panorama, continued; view to WNW
L12 - 26		panorama, continued; view to NW
L12 - 27	7	peamouth chub, gillnet catch
L12 - 28		peamouth chub, gillnet catch
L12 - 29	6	redside shiner, gillnet catch
L12 - 30	10	mountain whitefish, gillnet catch
L12 - 31		start of 90° panorama, taken from access site at middle W shore; view to SE
L12 - 32		panorama, continued; view to ESE
L12 - 33	2	panorama, continued; view to E
L12 - 34	3	panorama, continued; view to ENE
L12 - 35		panorama, continued; view to NE