Tchesinkut Lake, lake trout (Salvelinus namaycush) stock assessment and evaluation of short set small mesh experimental gill netting procedure.

Paul Giroux, M.Sc., R.P.Bio

Fish and Wildlife Science and Allocation Section
BC Ministry of Water, Land and Air Protection
Skeena Region
Bag 5000
Smithers, BC
VOJ 2N0

Skeena Report \# 132

March 2002

Giroux, P.A.
Tchesinkut Lake, Lake trout (Salvelinus namaycush) stock assessment and evaluation of short set small mesh experimental gill netting procedure.

Skeena Report Series; no.
© 2002 Province of British Columbia
Published by the
Fish and Wildlife Science and Allocation Section
BC Ministry of Water, Land and Air Protection
Skeena Region
3726 Alfred Avenue
Bag 5000
Smithers, BC VOJ 2NO

Abstract

Tchesinkut Lake was sampled during daylight hours between May $28^{\text {th }}-31^{\text {st }}$ using: 1) two short set (min. 1 hr) 60ft sinking gill nets per site with three 20 ft panels of 1.5 ", 2.5 " and 3 "; and 2) short set (min 1 hr) 90 m standard Resource Inventory Committee (RIC) sinking gill nets. Tchesinkut lake was sampled at an intensity of 1.77 sets $/ \mathrm{km}^{2}$ of lake area. Water temperature and dissolved oxygen levels were measure to 30 m and the lake was found to be unstratified. Twentyfive lake trout were captured and ranged from 40 -to- 70 cm in length. All lake trout sampled were less than 15 years of age and catch results were supplied to the creel survey efforts undertaken by Maniwa et al. (2001). Lake trout growth rates showed a significant increase since 1988 and combined with harvest data support the conclusion that Tchesinkut Lake's lake trout population is being over harvested (Maniwa et al. 2001).

The short-set, small mesh experimental gill nets demonstrated significant bias towards shorter, younger lake trout (t-cal: 2.1; $2.07 p=0.05$) and lake whitefish ($t-$ cal: 1.99; $2.02 p=0.05$) when compared against the 90 m RIC catch results. Using crew effort/time as an evaluation measure, short-set, small mesh gill nets (18.3 m nets) were found to be approximately half as efficient as short set 90 m RIC experimental sinking gill nets when comparing lake trout catch results. A lake trout mortality rate of 8% was observed for the short-set small mesh and 90 m sinking gill nets, indicating that the technique shows promise as an effective method for lake trout live capture and release. However, the apparent bias towards smaller and younger fish causes concern for comparing small mesh netting results versus conventional netting techniques using in the past. The comparison of small mesh netting to 90 m RIC should remain under study to increase sample size and improve confidence regarding observed size and age bias.

Acknowledgements

Funding for this project was provided by Fisheries Renewal BC, through a contirbution agreement with the Upper Fraser \& Nechako Fisheries Council, and administered by Todd French. Karen Geertsema and Rhonda Reynolds of the British Columbia Conservation Foundation (BCCF) of Prince George are acknowledged for their assistance with project administration. The proposal was submitted by Peter Hall under a partnership between Skeena Region Ministry of Water, Land and Air Protection (WLAP) and the Tchesinkut Watershed Protection Society (TWPS). Tom Blair of the TLPS and lan Sharpe of Skeena Region WLAP, Environmental Protection Section are acknowledged for their support of the project. Dana Atagi, Mark Beere, Sig Hatlevik, Jeff Lough, Ron Tetreau and Murray Booth, all of Skeena Region WLAP assisted with fish netting, handling and data capture. The efforts of Matt Jessop, BCCF Smithers, for assistance with data collection and data entry are also acknowledged. Lynn Miers of Aquatic Information Branch of Min. of Sustainable Resource Management is also acknowledged for supplying MS Access database entry tool. Jeff Lough provided editorial comments.

Table of Contents

Abstract i
Acknowledgements ii
Table of Contents iii
List of Figures iv
List of Tables v
1.0 Introduction 1
2.0 Methods 2
2.1 Timing 2
2.2 Site Selection 2
2.3 Fish Sampling 2
2.4 Net Evaluation 3
2.5 Data Management 3
3.0 Results 4
3.1 Fish Sampling 4
3.1.1 Effort and Catch Distribution 4
3.1.2 Lake Trout 6
3.1.3 Lake Whitefish Catch 9
3.2 Net Efficiency 11
4.0 Discussion 13
4.1 Catch Evaluation 13
3.2 Mortality 14
3.3 Lake Trout Stock Assessment 14
3.4 Net Efficiency 15
5.0 Conclusions 16
6.0 Recommendations 16
7.0 References 18
8.0 Appendices: Data used in this report 19

List of Figures

Figure 1: Location of Tchesinkut Lake in BC (inset) and in central BC................................... 1
Figure 2: Location of LAKe trout gill net sample sites on Tchesinkut Lake. 2
Figure 3: Dissolved oxygen (mg/L) and temperature (C°) profile for Tchesinkut Lake, May 29, 2001
Figure 4: Distribution of gill-netting effort (shaded bars) and total catch (white bars) ofall species by site within Tchesinkut Lake, May 28-31, 20015
Figure 5: Catch frequency distribution of lake trout (LT; white bars), lake whitefish (LW;grey bars) and rainbow trout (RB; black bars) catch by site, Tchesinkut Lake, May 28-31, 2001.5
FIgure 6: CATCH PER NET SET FOR LAKE TROUT (LT; BLACK), LAKE WHitefish (LW; GREY) AND RAInBOW TROUT (RB; white) in Tchesinkut Lake, MAY 28-31, 2001 6
FIGURE 7: LENGTH-CLASS (CM) FREQUENCY DISTRIBUTION FOR LAKE TROUT CAPTURED IN SHORT SET SINKing Gill nets, Tchesinkut Lake May 28-31, 2001 7
Figure 8: Age frequency histogram for lake trout captured in Tchesinkut Lake, May 28-31, 2001. 8
Figure 9: Individual (cross) and mean (shaded triangles) length-at-Age for lake trout CAPTURED in Gill nets, Tchesinkut Lake, May 28-31, 2001. Line represents best fit THROUGH MEAN LENGTH-AT-AGE POINTS 9
Figure 10: Length (cm) frequency (\%) histogram for Lake white fish captured by Gill net in Tchesinkut Lake, May 28-31, 2001. Mean lake whitefish length was 34.9cm. 10
Figure 11: Age (Years) frequency (\%) histogram for lake whitefish captured in tchesinkutLake, MAY 28-31, 2001.10
FIGURE 12: IndIVIDUAL (CROSSES) AND MEAN (SHADED TRIANGLES) LAKE WHITEFISH AGE (YEARS) ATLENGTH (CM) FOR 40 LAKE WHITEFISH SAMPLED IN TCHESINKUT LAKE, MAY 28-31, 2001. LINEREPRESENTS BEST FIT THROUGH MEAN LAKE WHITEFISH AGE.11
Figure 13: Cumulative frequency (\%) of lake trout less than 15 years of age. Lake trout CAPTURED BY GILL NET IN 2001 ($\mathrm{N}=25$) AND BY CREEL SURVEY IN 1988 ($\mathrm{N}=40$) 14
Figure 14: Growth (Length-at-Age) plot for lake trout captured in the 1989 Tchesinkut LAKE CREEL SURVEY (Bustard, 1989; n=40) AND the 2001 GILL NETTING ($\mathrm{N}=25$). 15

List of Tables

TABLE 1: SUMMARY OF LAKE TROUT FREQUENCY, MEAN LENGTH, STANDARD ERROR (\pm SE), MAXIMUM AND MINIMUM LENGTH BY LENGTH-CLASS (CM) CAPTURED IN TCHESINKUT LAKE, MAY 28-31, 2001.6
TABLE 2: SUMMARY OF MEAN AGE, STANDARD ERROR (\pm SE), MINIMUM AND MAXIMUM (YRS) FOR LENGTH CLASSES OF LAKE TROUT CAPTURED IN TCHESINKUT LAKE, MAY 28-31, 2001. 7
TABLE 3: SUMMARY OF MEAN LENGTH (CM), STANDARD ERROR (\pm SE), MINIMUM AND MAXIMUM LENGTH (CM) BY AGE CLASS (YRS) FOR LAKE TROUT CAPTURED IN TCHESINKUT LAKE, MAY 28-31, 2001.... 8

TABLE 4: SUMMARY OF LAKE WHITEFISH SUB-SAMPLED FOR AGE ANALYSIS, AGE-CLASS FREQUENCY, MEAN LENGTH, STANDARD ERROR (\pm SE), MINIMUM AND MAXIMUM (CM) FOR TCHESINKUT LAKE, MAY 28-31, 2001.
TABLE 5: SUMMARY OF LAKE WHITEFISH SUB-SAMPLED FOR AGE ANALYSIS, AGE-CLASS FREQUENCY (N), MEAN AGE (YRS) AND STANDARD ERROR (\pm SE), MINIMUM AND MAXIMUM (CM) FOR TCHESINKUT LaKE, MAY 28-31, 2001
TABLE 6: Summary of mean Leng th (cm) And Age (yRs) OF LAKE TROUT CAPTURED IN 18.3m AND 90 SINKING GILL NETS IN TCHESINKUT LAKE, MAY 28-31, 2001.
Table 7: Results of t-Test (unequal variances) between mean age and length of lake trout (LT) CAPTURED IN 18.3 AND 90 SINKING GILL NETS IN TCHESINKUT LAKE, MAY 28-31, 2001. 12

Table 8: Summary of Lake whitefish mean length and age standard error (SE) for 18.3m and 90M LONG SINKING GILL NETS SET IN TCHESINKUT LAKE, MAY 28-31, 2001. 12

Table 9: Results of t-Test (unequal variances) between mean age and length of lake
WHITEFISH (LW) CAPTURED IN 18.3 AND 90 SINKING GILL NETS IN TCHESINKUT LAKE, MAY 28-31,
2001.

12

TABLE 10: RESULTS OF CORRECTION FACTOR CALCULATIONS FOR 18.3 m AND 90M SINKING GILL NETS
USED IN TCHESINKUT LAKE MAY 28-31, 2001... 13
TABLE 11: Results of CORRECTION FACTOR CONVERSION OF SPECIES AND TOTAL CATCH RESULTS TO CATCH/100M NET/DAY (LT = LAKE TROUT, LW = LAKE WHITEFISH, RB = RAINBOW TROUT)............ 13
TAbLE 12: Summary of estimated effort (HRS) BETWEEN 18.3m AND 90m NeTs. 13

1.0 Introduction

BC Environmental Youth Team members, under the direction of the BC Ministry Water, Land and Air. Protection and employed by the Nechako \& Lakes District, conducted a creel survey on Tchesinkut Lake (Figure 1) over the later portion of the summer of 2000, the winter of 2000/01 and the entire summer of 2001 (Maniwa et al. 2001). The creel survey was initiated to address concerns of the Tchesinkut Lake Protection Society and local anglers that Tchesinkut Lake's lake trout (Salvelinus namaycush) population was in decline. The Skeena Region's, Fisheries Section of the Ministry of Water Land and Air Protection conducted experimental small mesh gill net sampling to accomplish the following objectives:

- capture a sample of lake trout $(n=30-50)$ representing all length and age classes;
- contribute age and length data from smaller lake trout to the creel survey data set in an attempt to address the size bias associated with creel surveys;
- obtain age structures from all lake trout captured to determine growth rates;
- capture, handle and release lake trout, while minimizing mortalities to less than 10\%; and,
- evaluate effectiveness of experimental gill nets to capture representative samples of lake trout;

Figure 1: Location of Tchesinkut Lake in BC (inset) and in central BC.

2.0 Methods

2.1 Timing

Sampling was conducted over a four day period between May $28^{\text {th }}-31^{\text {st }}$, when Tchesinkut Lakes water temperatures are predicted to be unstratified. Uniform water temperatures would permit unbiased sampling of the littoral zone for lake char who normally avoid warmer water temperatures typical of the littoral zone in summer and early fall months (Scott and Crossman 1973). Lake water temperature and dissolved oxygen (DO) levels were sampled to 30 m using an Oxyguard ${ }^{\text {TM }}$ DO/temp probe.

2.2 Site Selection

A minimum sampling intensity of 0.75 site $/ \mathrm{km}^{2}$ of lake area was used and corresponded to methods described by Osborn et al. (1997). Twenty-five site locations were selected systematically, spacing sites approximately $1-1.5 \mathrm{~km}$ apart along the shoreline (Fig. 2). An attempt was made to cover all areas of the lake, including bathymetric profiles, shoreline features, aspect, as well as, tributary stream inlets and outlets.

Figure 2: Location of lake trout gill net sample sites on Tchesinkut Lake.

2.3 Fish Sampling

Two small mesh mono-filament sinking gill nets comprised of three panels; 1) $20 \mathrm{ft}(6.1 \mathrm{~m}) 1.5$ " mesh, 2) $20 \mathrm{ft}(6.1 \mathrm{~m}) 2.5$ " mesh, and 3) 20ft(6.1m) 3" mesh were anchored perpendicular to the shore with a 10 or 20 m line. A standard Resource Inventory Committee (RIC) 90m experimental sinking gill net was also employed at sites following the use of the smaller nets to improve catch efficiency.

All nets were left to soak for a minimum of one hour and a maximum of three hours prior to hauling. Where lake trout were captured, sites may have been sampled repeatedly over the four day period as time permitted.

Fork length was recorded for all fish captured and lake trout were tagged with Floy, T-anchor tags. Scale samples were collected from lake whitefish (Coregonus clupeaformis) and rainbow trout (Oncorhynchus mykiss). Lake trout had a two cm section of the leading pectoral fin ray, located closest to the body removed for aging. Lake trout that suffered mortality had both otoliths and fin rays removed.

All fish species age structures were sent to North South Consultants of Winnipeg for aging.

2.4 Net Evaluation

Eighteen meter and 90 mets were evaluated for efficiency by converting recorded catches to a standard catch/100m net/day, as described by deLeeuw (1991). Meters per net hour was calculated by multiplying net length (m) by hours for each net set (net length $(m) x$ hrs $=m$.net hrs). The result was used to calculate catch/100m net/day (Equation 1).

Equation 1: Correction factor equation applied to standardize net catch for different net lengths and soak times.
$\left[\left(2400 \times\left(x_{i}\right) \div(a)\right] \div x_{i}=\right.$ Correction factor (catch/100m net/day) where:
$x_{i}=$ no. of nets
$a=$ total m.net hrs
$2400=24$ hrs $\times 100 \mathrm{~m}$ net length

The correction factor is then multiplied against the actual catch by species and catch results to allow for equal comparisons between separate net lengths and soak times

2.5 Data Management

All fisheries data generated as a result of the sampling effort were entered into a Microsoft Access database provided by the Aquatic Information Unit of the Ministry of Sustainable Resource Management (MSRM). When the completed database is supplied to MSRM it will be uploaded into the Provincial Fisheries Data Warehouse. Once in MS Access, fisheries data were then exported into Microsoft Excel (v7) for analysis and graphics preparation.

3.0 Results

Tchesinkut Lake was unstratified on May $30^{\text {th }}, 2001$ as water temperature and dissolved oxygen showed little variation between the surface and 30m (Fig.3).
Therefore, the assumption that lake trout were vulnerable to capture at all depths was satisfied.

Figure 3: Dissolved oxygen (mg / l) and temperature $\left(\mathrm{C}^{\circ}\right)$ profile for Tchesinkut Lake, May 29, 2001

3.1 Fish Sampling

3.1.1 Effort and Catch Distribution

Over the four day sampling period (May 28-May 31, 2001) 109 fish were captured; 25 lake trout, 79 lake whitefish and 6 rainbow trout. Gillnetting conducted by Webber and Tupniak (1981) in Tchesinkut Lake resulted in similar species composition as in 2001. The BC Fisheries warehouse lists burbot (Lota lota) and kokanee (O. nerka) as present in Tchesinkut Lake, but they were not captured during the sampling period.

Total gill net effort, measured by number of net sets, was completed at a rate of 1.77 sets $/ \mathrm{km}^{2}$ of lake area, which is two-times greater than that recommended by Osborn et al. (1997). Netting effort was heaviest at sites 8-11 and 13 where
between $8-18 \%$ of total effort was expended. The remaining sites were sampled between $2-5 \%$ of total effort (Figures $2 \& 4$).

Figure 4: Distribution of gill-netting effort (shaded bars) and total catch (white bars) of all species by site within Tchesinkut Lake, May 28-31, 2001.
Catch results corresponded directly to effort, as nets were set repeatedly at sites in which lake trout were captured (Fig. 5).

Figure 5: Catch frequency distribution of lake trout (LT; white bars), lake whitefish (LW; grey bars) and rainbow trout (RB; black bars) catch by site, Tchesinkut Lake, May 28-31, 2001.

Sites 11 and 9 , which had the greatest amount of effort produced the greatest number of fish. Of interest is the generally low catch results for the northern shore of Tchesinkut Lake contrasted against the high catch results from the south-eastern shore. Sites 9-11 generated the highest catch of lake trout per set, whereas sites $1,5,9,11,12,14,18$ and 23 produced high catch rates of whitefish. Sites 18 and 24 produced the highest catch rates, however, species diversity was low and not of the target species, lake trout (Fig. 6).

Figure 6: Catch per net set for lake trout (LT; black), lake whitefish (LW; grey) and rainbow trout (RB; white) in Tchesinkut Lake, May 28-31, 2001.

3.1.2 Lake Trout

Twenty-five lake trout were captured over the four day sampling period and comprised 23% of the total catch. Lake trout catch rate was $0.42 /$ set. Only two lake trout suffered immediate mortality as a result of netting, resulting in an 8% immediate mortality rate. Mean fork length of lake trout netted was 52.89 cm (Table 1). Lake trout greater than 40 cm and less than 50 cm were the most frequent size class captured ($\mathrm{n}=11$), followed by $50-60 \mathrm{~cm}(\mathrm{n}=8)$ and $60-70 \mathrm{~cm}$ ($\mathrm{n}=6$; Fig. 6). Lake trout greater than 70 cm were not captured.

Table 1: Summary of lake trout frequency, mean length, standard error (\pm SE), maximum and minimum length by length-class (cm) captured in Tchesinkut Lake, May 28-31, 2001.

Length Class (cm)	Frequency	Mean Length (cm)	\pm SE	Max (cm)	Min. (cm)
<40	0				
$40-45$	6	43.1	0.602	44.5	41
$45-50$	5	46.7	0.43	48	45.5
$51-55$	4	52.75	0.92	55	51
$55-60$	4	57.4	0.37	58	56.6
$60-65$	4	63.62	0.8	65	62
$65-70$	2	67.6	2.4	70	65.2
>70	0	0	0	0	0
Total	25	52.89	1.72	70	41

Figure 7: Length-class (cm) frequency distribution for lake trout captured in short set sinking gill nets, Tchesinkut Lake May 28-31, 2001.

Mean lake trout age was 9.3 years, while minimum age sampled was five and maximum was 15 years (Table 2).

Table 2: Summary of mean age, standard error (\pm SE), minimum and maximum (yrs) for length classes of lake trout captured in Tchesinkut Lake, May 28-31, 2001.

Length Class (cm)	n	Mean Age (yrs)	\pm SE	Min	Max
<40	0	0	0	0	0
$40-45$	6	7.16	0.6	5	9
$45-50$	5	8	0.63	6	10
$50-55$	4	10	0.41	9	11
$55-60$	4	11.5	1.75	8	15
$60-65$	4	10.5	1.44	7	14
$65-70$	2	11	2	9	13
$70+$	0	0	0	0	0
Total	25	9.3	1.14	5	15

The 7-10 year age classes were the most abundant in the sample, followed by $13-14$ and $5-6$ (Fig.7). Only one lake trout was captured in the 11 and 15 year age class and lake trout aged 12 or 16 years were absent in the sample (Fig. 8).

Figure 8: Age frequency histogram for lake trout captured in Tchesinkut Lake, May 2831, 2001.

Table 3: Summary of mean length (cm), standard error (\pm SE), minimum and maximum length (cm) by age class (yrs) for lake trout captured in Tchesinkut Lake, May 28-31, 2001.

Age Class (yrs)	n	Mean Length (cm)	\pm SE	Min	Max
$2-4$	0	0	0.00	0	0
$5-6$	3	43.6	0.01	41.5	45.5
$7-8$	8	48.5	2.56	41	62.5
$9-10$	8	54.53	2.45	44.1	65.2
$11-12$	2	58	7.00	51	65
$13-14$	3	64.3	3.48	58	70
$15-16$	1	58	0.00	58	58
Total	25	54.5	2.6	41	70

Lake trout growth appears to be rapid up to age 11, whereas maximum length appears to be reached by age 13 (Fig. 9). Considerable variation length variation exists for lake trout aged between 7 and 11 years of age. However, interpretation of the age data must be viewed with caution due to the small sample size.

Figure 9: Individual (cross) and mean (shaded triangles) length-at-age for lake trout captured in gill nets, Tchesinkut Lake, May 28-31, 2001. Line represents best fit through mean length-at-age points.

3.1.3 Lake Whitefish Catch

Lake whitefish were the most abundant fish species captured over the four day sampling period, comprising 72.5% of the total catch ($\mathrm{n}=86$). Four whitefish were captured and released without being measured for length or having scale samples collected. Mean lake whitefish fork length for all whitefish sampled was 34.9 cm , and 39.7 cm for lake whitefish sampled for age (Table 4). Of the 86 lake whitefish captured, 32% ($n=28$) suffered mortality, whereas $68 \% ~(n=58)$ were live released. The catch rate for lake whitefish was $0.67 /$ set.

Table 4: Summary of lake whitefish sub-sampled for age analysis, age-class frequency, mean length, standard error (\pm SE), minimum and maximum (cm) for Tchesinkut Lake, May 28-31, 2001.

Age Class $($ yrs $)$	Frequency (n)	Mean Length (cm)	\pm SE	Min. (cm)	Max. (cm)
<3	2	22.25	0.25	22	22.5
$4-5$	16	31.89	0.851	27	37.5
$6-7$	10	33.10	1.314	28	39.8
$8-9$	5	46.90	4.007	37	56
$10-11$	4	44.00	3.75	39	55
$12-13$	2	47.50	5.5	42	53
<14	1	52.30	0	52.3	52.3
Total	40	39.7	2.2	22	52.3

Lake whitefish $30-40 \mathrm{~cm}$ were the most abundant length class captured, followed by fish smaller than 30 cm and fish larger than 40 cm (Fig. 10).

Figure 10: Length (cm) frequency (\%) histogram for lake white fish captured by gill net in Tchesinkut Lake, May 28-31, 2001. Mean lake whitefish length was 34.9 cm .

Of the lake whitefish sub-sampled for age, the mean age was 6.8 years, whereas the majority of the whitefish captured were less than seven years of age (Fig. 11). Juvenile lake whitefish (i.e. < 2yrs) were absent from the sample (Fig.11).

Figure 11: Age (years) frequency (\%) histogram for lake whitefish captured in Tchesinkut Lake, May 28-31, 2001.

Tchesinkut Lake lake whitefish display consistent growth over all age classes (Fig. 11). A reduction in the growth rate does appear evident at the age of 11, however the relatively high amount of size variation for fish greater than eight years old and a low sample size for lake whitefish older than 11 years of age limits the rigour of this observation (Fig. 11, Table 5).

Figure 12: Individual (crosses) and mean (shaded triangles) lake whitefish age (years) at length (cm) for 40 lake whitefish sampled in Tchesinkut Lake, May 28-31, 2001. Line represents best fit through mean lake whitefish age.

Table 5: Summary of lake whitefish sub-sampled for age analysis, age-class frequency (n), mean age (yrs) and standard error (\pm SE), minimum and maximum (cm) for Tchesinkut Lake, May 28-31, 2001

Length Class (cm)	Frequency (n)	Mean Age (yrs)	\pm SE	Min. (cm) Max. (cm)	
$20-25$	2	3	0	3	3
$25-30$	8	4.75	0.313	4	6
$30-35$	11	5.18	0.226	4	6
$35-40$	11	7.27	0.619	5	11
$40-45$	2	12	1	11	12
$45-50$	0				
$50-55$	5	11	0.949	9	14
$55-60$	1	9	0	9	9
Total	40	6.8	0.4	3	14

3.2 Net Efficiency

Short set 18.3 m small mesh gill nets captured younger and smaller lake trout compared to the longer 90m RIC experimental sinking gill nets (Table 6). The observed differences were shown to be statistically significant following comparison of mean length and age using student's t-Test (unequal variances) (Table 7).

Table 6: Summary of mean length (cm) and age (yrs) of lake trout captured in 18.3m and 90 sinking gill nets in Tchesinkut Lake, May 28-31, 2001.

LT	Mean Length (cm)	Mean Age (yrs)		
18.3 m net	51.85	3.008	8.36	0.71
90 SE net	53.71	2.056	10.07	0.68

Table 7: Results of t -Test (unequal variances) between mean age and length of lake trout (LT) captured in 18.3 and 90 sinking gill nets in Tchesinkut Lake, May 28-31, 2001.

LT Age	n	$d f$	t-Cal.	t-Crit. $p=0.05$
18.3 m net	11	22	0.098	2.07
90 m net	14			
LT Length				
18.3 m net 11 18 0.614 2.1 90 m net 14				

Lake whitefish demonstrated a similar pattern to that observed for late trout, where smaller and younger fish were captured in the shorter, smaller mesh nets (Table 8.). Like lake trout, the observed mean differences were shown to be significantly different (Table 9).

Table 8: Summary of lake whitefish mean length and age standard error (SE) for 18.3 m and 90 m long sinking gill nets set in Tchesinkut Lake, May 28-31, 2001.

Net length	Mean Length (cm)	\pm SE	Mean Age (yrs)	\pm SE
18.3 m	33.83	0.988	6.54	0.65
90 m	35.68	1.48	6.94	0.61

Table 9: Results of t-Test (unequal variances) between mean age and length of lake whitefish (LW) captured in 18.3 and 90 sinking gill nets in Tchesinkut Lake, May 28-31, 2001.

LW Age	n	$d f$	t-Cal.	t-Crit. $p=0.05$
18.3 m net	22	38	0.658	2.02
90 m net	18			
LW Length				
18.3 m net	47	62	0.305	1.99
90 m net	35			

When netting techniques are compared against one another from a perspective of efficiency of time, effort and catch ability, the two netting techniques generate contrasting results. Following standardizing catch results into catch/100m net/day units (Table 10), the 90m experimental mesh nets captured similar amounts of lake trout, whereas greater numbers of lake whitefish and rainbow trout were captured in the shorter, smaller meshed nets (Table 11). However, the time and effort required to haul, set and move the smaller 18.3 m nets to catch virtually equal numbers of lake trout was two times greater than that for the

90 m nets (Table 11, Table12). This is primarily a function of a high number of net sets ($\mathrm{n}=52$ for 18.3m nets) and the use of the smaller nets for the initial netting efforts of the first 25 sites.

Table 10: Results of correction factor calculations for 18.3 m and 90 m sinking gill nets used in Tchesinkut Lake May 28-31, 2001.

100m/24hr Net Day Correction Factor			
net length	hrs	m.net hrs	Correction Factor
18.3	60.6	1108.98	2.16
90	17.07	1536.3	1.56

Table 11: Results of correction factor conversion of species and total catch results to catch/100m net/day ($\mathrm{LT}=$ lake trout, $\mathrm{LW}=$ lake whitefish, $\mathrm{RB}=$ rainbow trout).

net type (m)	Species	Catch	Correction Factor	Catch/100m net/day
18.3	LT	10	2.16	22
	LW	50	2.16	108
	RB	4	2.16	9
	Total	64	2.16	139
90	LT	13	1.56	20
	LW	25	1.56	39
	RB	1	1.56	2
	Total	39	1.56	61

Table 12: Summary of estimated effort (hrs) between 18.3 m and 90 m nets.

Activity	Time Estimate	Net Type	
		18.3 m	90 m
Setting	$5 \mathrm{sec} / \mathrm{m}$	7.63	37.5
Hauling	$10 \mathrm{sec} / \mathrm{m}$	15.25	75
Moving	$30 \mathrm{~min} / \mathrm{site}$	30	30
	$\mathrm{hrs} / \mathrm{set} / \mathrm{site}$	0.88	2.38
	total \# sets	52	8
	total hrs effort	45.83	19

4.0 Discussion

4.1 Catch Evaluation

Lake trout catch per unit effort (net set) was comparable to that reported by Connor (2000) for efforts on Atlin Lake, and exceeded results for Tagish and Teslin lakes. However, net dimensions are not equal among projects; nets used on Atlin Lake were 68.58 m (225ft) in total length. The results reported by Connor (2000) were also not standardized to 100 m net/day, making direct comparison difficult.

3.2 Mortality

Although the effort required to set and retrieve nets is intensive (Table 10), short set, small mesh gill net sampling proved effective at capturing fish. Lake trout mortality rates were low (8\%) and equal to those reported by Conner (2001) who applied similar techniques on Atlin Lake. However, lake whitefish suffered high mortality rates (32\%) compared to lake trout. This was especially evident for mid-sized, lake whitefish that become trapped in larger mesh sizes (2.5" and 3") panels. Once trapped in the mesh to the mid portion of their bodies, scale loss became a serious injury from which many fish would not recover. External and internal gill structures were also often damaged in the process of freeing captured lake whitefish. Other than attending nets at the hourly interval, or sacrificing net structures to free severely entangled fish, there are no suggestions to reduce lake whitefish mortality.

3.3 Lake Trout Stock Assessment

Comparison of the 2001 netting results to earlier sampling efforts is not possible due to low sample size (Webber and Tupniak, 1981) or free of bias due to differences in methodology (Bustard, 1989). When comparing catch results from 2001 to 1988 for lake trout less than 15 years of age using formats developed by deLeeuw (1991), there appears to be an increase in the frequency of younger fish in the catch (Figure 13). However, because of the comparison of catch results from two separate capture techniques (eg. netting vs. angling) the value in the interpretation of this result is significantly reduced.

Figure 13: Cumulative frequency (\%) of lake trout less than 15 years of age. Lake trout captured by gill net in $2001(n=25)$ and by creel survey in $1988(n=40)$.

Analysis of lake trout growth for char less than 15 years of age demonstrated that lake trout captured in 2001 are experiencing accelerated growth when compared to age and length data collected in 1988 (Fig. 14). Following their examination of the data, Maniwa et al. (2001) found that the mean length of lake trout less than 15 years of age was significantly greater in 2001 than in 1988. This lead to the conclusion that Tchesinkut Lake's present lake trout population is experiencing an accelerated growth rate when compared to the growth rate measured in 1988. This observation, combined with the 2001 creel survey findings that the annual harvest for Tchesinkut Lake's lake trout is exceeding the theoretical mean sustainable yield (MSY=716kg/yr) by three times ($2,266 \mathrm{~kg} / \mathrm{yr}$) contributed to the conclusion that the lake trout population is likely responding to overharvest (Healy, 1978, Maniwa et al. 2001).

Figure 14: Growth (length-at-age) plot for lake trout captured in the 1989 Tchesinkut Lake creel survey (Bustard, 1989; $n=40$) and the 2001 gill netting ($\mathrm{n}=25$).

3.4 Net Efficiency

Using a basis of staff time and catch results, the 90 m RIC experimental nets were a more effective method in which to capture lake trout when compared to the 18.3 m small mesh nets. This observation is based on comparably equal numbers of lake trout being captured using the 90 m (100m/net/day, $\mathrm{n}=20$) and 18.3 m gill nets ($100 \mathrm{~m} /$ net/day, $\mathrm{n}=22$), despite expending more than twice the effort setting, retrieving and moving the 18.3m nets (Table 12) in addition to the 18.3 m nets being set for 28% more net hours (Table 10).

The 18.3 m , small mesh nets captured smaller and younger lake trout in comparison to the longer 90 m nets. Combining the netting results with the catch data collected with the Tchesinkut creel survey (Maniwa et al. 2001) contributed towards accomplishing the objective of addressing the size bias of the creel data.

The observed size bias associated with the 18.3 m small mesh nets causes concern however, for their utility in comparing catch results from previous netting programs that used 90m RIC experimental gill nets.

The use of high intensity, short, small mesh net sets was demonstrated to be effective at sampling lake whitefish. The size selectivity of the smaller mesh lends well to the capture of smaller bodied fish such as lake whitefish.

5.0 Conclusions

Twenty-five lake trout were captured in Tchesinkut Lake over a four day sampling period. Lake trout from 40 -to- 70 cm in length were captured and handled. All lake trout sampled were less than 15 years of age and catch results were supplied to the creel survey efforts undertaken by Maniwa et al. (2001). Lake trout growth rates showed a significant increase since 1988 and lend support to the conclusion that Tchesinkut Lake's lake trout population is being over harvested.

The short-set, small mesh experimental gill nets proved to be an effective method to capture lake trout and lake whitefish; however, when compared to catch results using 90m RIC experimental sinking gill nets, they demonstrated bias towards shorter, younger lake trout and lake whitefish. This sheds some concern over the utility of using this method to compare catch results against historical netting methods. It was also determined that the crew effort/time efficiency when using the short-set small mesh gill nets was approximately half of the effort to set and process the 90 m RIC experimental sinking gill nets.

An immediate mortality rate of 8% was observed for the 25 lake trout sampled using short set small mesh and 90 m sinking gill nets, indicating that the technique shows promise as an effective method for live capture and release of lake trout.

6.0 Recommendations

The following recommendations are provided following review of the discussion and conclusions:

1. Increase the overall small mesh gill net length to a minimum of 45 m (150ft), while maintaining equal lengths of mesh sizes and configurations (eg. 1.5", 2.5" and 3" panels).
2. Future netting efforts using small mesh nets should continue with minimum one-hour set 90 m RIC sinking gill nets. The goal of increasing the sample size of fish to permit the re-evaluation of age and size bias of small mesh nets versus larger RIC nets.
3. Continue the use and support of provincial standard database entry tools to assist with the storage and access of regional fisheries data.
4. Evidence presented in this report, Bustard (1989), and Maniwa et al. (2001) indicates that lake trout overharvest has been occurring, and that regulation changes are justified to manage Tchesinkut Lake for trophy or natural lake trout population. Regulations for Tchesinkut Lake should be modified only after consultation with local anglers and stakeholder groups.
5. Regulation changes that reduce harvest to within the theoretical harvest level of 716kg/yr (Bustard, 1989; Healy 1978) and are in effect for a long period of time (min. 20 yrs) should be considered.
6. Sampling of lake whitefish and other possible lake trout prey species should continue to be sampled in any additional sampling episodes to assist with the evaluation of possible changes to lake fish community structure.

7.0 References

Bustard, D. 1989. Francois Lake creel survey 1988-89. BC Min. of Environment, Skeena Region, Smithers, BC. 35pp.

Conner, M. 2001. Small mesh gillnet assessment of Â Tlèn (ATLIN) Lake, British Columbia. Unpublished report prepared by Taku River Tlingit Fisheries Department for Taku and Atlin Community Fisheries Working Group.
deLeeuw, A.D. 1991. Skeena Region Lake Trout Management. An Evaluation of Ten Skeena Region lakes Trout Populations Relative to Habitat Variables and Fishing Intensities. BC Ministry of Environment, Fisheries Branch, Smithers. Skeena Region Fisheries Section unpublished manuscript.

Earhardt, R. 1999. Proposal for funding from the Taku and Atlin Community Fisheries Working Group for the assessment of Atlin Lake Lake Trout in 2000.

Healy, M.C. 1978. The dynamics of exploited lake trout populations and implications for management. J.WildI.Mgt. 42(2) 307:328.

Lester, N.P., M.M. Petzold, W.I. Dunlop, B.P. Monroe, S.D. Orsatti, T. Schaner, and D.R. Wood. 1991. Sampling of Ontario lake trout stocks: issues and standards. Lake Trout Synthesis Sampling Issues and Methodology Working Group, Ontario Ministry of Natural Resources. Toronto, ON.

Maniwa, T., D. Leach, and P. Hall. 2002. Creel survey of Tchesinkut Lake, 2000-01. BC Ministry of Water, Land and Air , Skeena Region. Unpublished manuscript.

Osborn, C., S. Thompson, A. Foos, and N. deGraff. 1997. Tagish Lake Tagging Project, interim data report. Yukon Renewable Resources, Whitehorse, Yukon.

Webber, T. and B. Tupniak. 1981. Tchesinkut Lake MU 6-4. Lake Survey and summary document. BC Ministry of Environment, Victoria, BC.

