Mr. D. Raudsepp

Water Inv. Branch
J. Poweraker, Geological Engineer

January 14th 64

Ground-Water Fossibilities at the Proposed
$0254126 / 0239013$
Institution Site on the Prent River

General.

A field investigation was made of possible sources of ground water for an institution near the Trent River, south of Courtenay on Vancouver Island. In a report on the Trent River, Water Supply Possibilities, 1964, (File No. 0254726) the building site is described as being pos-. sibly on the south side of the Trent River near the B. C. Hydro, and Power Authority main transmission line from Campbell Biver. In the course of the present field investigation the writer found that conditions for adequate ground-4ater supplies appeared to be unfavorable in the general area. However, if a proposal is made to go ahead with a drilling program, two sites are suggested here, where limited supplies (for example $20-50 \mathrm{~g}$. Pom.) might be obtained.

The writer spent Jamuary 7th to 10th in the field investigating the surficial geology along the Trent River, and examining other exposures in nearby areas. The general area is covered by the G.S.C. Map 32-1960, Courtenay, Surficial Geology by J. G. Fyles, 1956-57, and by the Soil Map of Vancouver Island, Courtenay-Campbell Sheet 1958. The pertinent parts of these maps are reproduced in Figures 1 and 2 respectively.

Geology
In Fig. 1, Pyles shows the Trent River to be bounded on the south side mainly by marine deposits (5d): varied stony, gravelly and sandy marineveneer deposits generally less than 5 feet thick. These beds overlie ground moraine deposits (3): till, lenses of gravel, sand and silt. On the north side the river is bounded by deltaic deposits (6a); gravel and sand commonly underlain by silt and clay. (Deltaic deposits are also present upstream from the proposed building site on the south side as well). All these surficial deposits appear to be relatively thin (20-30 1eet thick) and overlie bedrock shales. The Trent River has cut its winding river pattern in these shales to a depth of 150-175 feet. The shales are found to outcrop continuously from a point upstream from the logging road bridge (A, in Fig. 1) to a point downstream near the railway bridge (C, in Fig. 1). The shale is prominently displayed mero-
where the river cuts into the valley side, and forms steep paces and active scree slopes. Slumping and sliding has taken place in several places, both in the shales and in the overlying surficial deposits. This movement has no doubt been assisted by the undercutting from the river and seepages from near the top of the slides. On the valley floor, the tree covered narrow valley flat areas appear to be periodically flooded and recent drift wood was found on several of these areas. Although main fell during most of the field investigation and the river appeared to be running well above its normal stage, the river water remained essentially clear.

Further upstream, near the logging road bridge at A, Fyles shows further deltaic deposits, and also glacio-fluvial deposits (4a); hummocky, knob and kettle, and ridged deposits consisting of gravel, sand, and lenses of till. The writer investigated several gravel pits that have been opened up in this area and found several seepages near the base of these pits. Bedrock shale however outcrops in the river valley walls up and domstream fron these deposits it appears therefore that these surficial deposits, are of limited extent and thickness, and are perched on the shales well above the Trent Rivero

The abandoned stream channels investigated by Fyles further upstream again . are cut in bedrock sandstone, and the surficial depósits that are present above this are of Jinited extent and thickmess.

The present Trent Biver deltaic deposits do not extend for any distance or depth upstream; as bedrock shale outcrops at river level near the railway bridge crossing at C.

Ground Water

The relatively small thickness of the surficial deposits found on either side of the Frent River, the position of these deposits high above the present river level, and the impermeable nature of much of the underlying material especially on the south side of the river, suggest it is unlikely that a suitable supply of ground water can be found near the proposed building site. It should be pointed out here that the information from the Soils Map (Fig. 2) would appar to contradict the previous statement, as the proposed building site is shown to be situated in a rapidly drained loany sand over sand or gravel. However, on the basis of the surficial geology map, and the investigation of exposures in the field near the site by the writer, it is clear that
over much of this area the soil may be overlying impermeable tills and silt beds. Other soils shown adjacent to the rrent River (Fig. 2, D, R, and B) are shown in the legend as also overlying material described as slouly perneable. The poor drainage of surface water observed by the uriter in several areas of low relief near the site could be due to these conditions:

Referring to the north side of the river, a Mr. Carter of the Van Dyke logging Company, informed the writer of a well drilled to 60-90 feet by the company (at the point marked E in Fig. 1). He stated the drill passed through gravels at this depth, and estimated the flow of water at $40-50$ gallons per minute. The kell is not, at present in use. However, if this information is correct, then it would appear that the bedrock must be moch deeper at this point, and although no further evidence could be found to substantiate Mo. Carter's claim; it suggests that a limited ground-water supply is available here.

The writer also talked with residents on the present Trent Raver delta area. They described two shallow wells dug on the delta; adjacent to the Trent River which produce 400 and 1200 galions per hour respectively. They also stated that the river invariably goes "underground" in the dry period, or is reduced to a very small surface flow. A limited water ground-water supply could be expected in this delta region.
The possibilities of finding a suitable ground-water supply in the surficial deposits near the logging road bridge over the Trent River (A, Fig. 1) are considered to be unfavorable.

Recommendations and General Sunmary
Ground Water:
The field investigation indicates that no extensive aquifer or large source of ground water exists in the area investigated. However, if it is decided to continue with further ground-water investigations by drilling, then the mriter would recommend that either the present delta area of the Trent River and/or a site near the Van Dyke Logging Company plant (B, Fig. 1) be investigated. The latter site it should be noted, is based only on the information supplied by fr. Carter.

January 14th, 1964

Drainage:

Iand near the proposed site was found to be water-logged after heavy rain and may present some drainage problems.

Water Quality:

The Trent fiver water appeared to be essentially cleax, and free of silt, although considerable rain had fallen in the area and the river stage was above normal.

J. Fowerakér Geological. Engineer

35/18

Figure 2. Soil Map. Trent River Area.
PLEISTOCENE AND RECENT SALISH SEDIMENTS (8)
VALLEY ALLUVIUM AND COLLUVIUM: boulders, gravel, CAPILANO SEDIMENTS $(5,6)$
6 TERRACED FLUVIAL DEPOSITS:
ba, Deltaic deposits: gravel and sand commonly underlain by silt and clay bb, Floodplain and channel deposits: gravel, sand, minor silt (shown only where averaging 5 feet or more in thickness; thinner deposits included in unit 7)
bc, Alluvial-fan deposits; poorly sorted gravel
MARINE DEPOSITS (INCLUDING GLACIO-MARINE):
5a, silt, clay, stony clay
5b, sand, pebbly sand, sandy gravel; \} thickness few $\left.\begin{array}{l}\text { generally underlain by clay } \\ 5 \mathrm{c}, \mathrm{gravel}, \text { sand; in spits, bars, etc. }\end{array}\right\} \begin{aligned} & \text { thickness few } \\ & \text { inches to } 30 \text { feet }\end{aligned}$ 5c, gravel, sand; in spits, bars, etc. 5d, varied stony, gravelly, and sandy marine-veneer deposits ne, loamy, and thickness generally clayey marine-vereer deposits
VASHON DRIFT $(3,4)$
GLACIO-FLUVIAL DEPOSITS: gravel, sand; lenses of till; Aa, hummocky, knob-and-kettle, and ridged deposits (esker shown by symbol); 4b, terrace and pitted terrace deposits
GROUND MORAINE DEPOSITS: till; lenses of gravel, sand, and silt; Ba, till, alluvium, and colluvium
QUADRA SEDIMENTS (1)
Sand; minor gravel, silt, peat, peaty soil, driftwood

Gravel, sand, silt, clay, till; beneath Vashon ground moraine, relation to Quadrat not known
Areas of bedrock outcrop and of outcrop interspersed
\qquad
with patches of thin overburden . R
Bedrock outcrop in area of overburden . \times
R
Geological boundary (approximate)
Limit of geological mapping
Glacial striae (S), grooves (G), stoss-and-lee surfaces (SL), miniature crag-and-tail forms (CT) (direction of ice movement indicated, not indicated)
Crag-and-tail hills..
Landslide scar . ~~~~~~~~~~

Abandoned channel . N
Limit of marine overlap (not shown on deltas)
Gravel pit父

Figure 1 Surficial Geology Map, Trent Biver Area.

