DISCOVERY ISLANDS ECOSYSTEM MAPPING 2013-2014 SENSITIVE ECOSYSTEMS FIELD VALIDATION

Prepared by:

Ryan Durand, RPBio. Durand Ecological Ltd.

Table of Contents

TABLE	E OF CONTENTS	II
LIST O	OF TABLES	III
LIST O	DF FIGURES	III
ACKN	NOWLEDGEMENTS	V
1.0	INTRODUCTION	1
2.0	STUDY AREA	2
3.0	METHODOLOGY	3
3.1	1 BGC Site Series	
3.2	2 SEI Classes and Subclasses	
4.0	RESULTS	
4.1	1 BGC Site Series	
4.2		
(Old Forest (OF)	
1	Mature Forest (MF)	
۱	Woodland (WD)	25
F	Riparian (RI)	
۱	Wetland (WN)	
ŀ	Herbaceous (HB)	
9	Sparsely Vegetated (SV)	43
E	Estuarine (ES)	45
Ι	Intertidal & Shallow sub-tidal (IT)	
	Lakes & Ponds (FW)	
(Other Important Ecosystems	
	Young Forest (YF)	51
5.0	RECOMMENDATIONS	53
6.0	REFERENCES	55
7.0	APPENDICES	56
7.1	APPENDIX 1. RAW SAMPLE PLOT DATA	56

List of Tables

TABLE 2.1. BIOGEOCLIMATIC ZONES, SUBZONES AND VARIANTS FOUND IN THE STUDY AREA	3
TABLE 3.1-1. CWHDM SITE SERIES (MOF 2011)	6
Тавle 3.1-2. СWHмм1 Site Series (MOF 2011)	7
TABLE 3.1-3. CWHVM1 SITE SERIES (MOF 2011)	8
TABLE 3.1-4. CWHVM2 SITE SERIES (MOF 2011)	9
TABLE 3.1-5. CWHXM1 SITE SERIES (MOF 2011)	10
TABLE 3.1-6. CWHxm2Site Series (MOF 2011)	11
TABLE 3.1-7. MHMM1 SITE SERIES (MOF 2011)	12
TABLE 3.2-1. SEI CLASSES AND SUBCLASSES	13
TABLE 3.2-2. OIE CLASSES AND SUBCLASSES	15
TABLE 3.2-3. NS CLASSES AND SUBCLASSES	16
TABLE 4.1-1. SUMMARY OF NUMBER, TYPE AND BGC SUBZONE OF SAMPLE PLOTS.	17
TABLE 4.1-2. SUMMARY OF NUMBER, AND LOCATION OF SAMPLE PLOTS.	17

List of Figures

2
18
20
21
22
24
25
26
27
29
30
31
32
34
35
36
37
38
39
40

41
42
43
44
46
47
48
49
50
51
52
53

Acknowledgements

We would like to thank the numerous people and organizations that helped make this project succeed. In particular, Lannie and Ralph Keller for overall project organization and opening up their house, lodge and kitchen, and Eve Flanger for project planning, SEI mapping, and assisting with the development of the SEI classification and description. Sabina Leader Mense assisted with the 2013 field work. And most importantly, Cam Erickson (Sonora Island resident) for providing three weeks of boat transportation and field assistance, including an incredible wealth of local ecological and historic knowledge. Also we would like to send out a big thanks to the numerous other families, individuals and organizations that provided us accommodations and invited us to their dinner tables.

1.0 Introduction

The Discovery Islands Ecosystem Mapping (DIEM) Project is creating ecosystem maps to provide a comprehensive visual reference that local communities, governments, and land managers can use to better understand the area and enlighten discussions about resources and development. A Sensitive Ecosystem Inventory (SEI) has been created for the study area, largely from existing Terrestrial Ecosystem Mapping (TEM) and Vegetation Resource Inventory (VRI) data. Durand Ecological Ltd. was retained in 2014 to complete a field validation of the SEI mapping.

SEI mapping was created in 1993 by the Canadian Wildlife Service and the BC Conservation Data Centre. It was created in *'response to a need for inventory of at-risk and ecologically fragile ecosystems, and critical wildlife habitat areas on the east side of Vancouver Island.'* Since then, numerous projects have been completed on the Sunshine Coast, Bowen Island, and throughout the Okanagan, and portions of the Fraser Valley. In 2006 a *Standard for Mapping Ecosystems At Risk in British Columbia* was created by the Resource Inventory Standards Committee to promote a standardized process province wide (RISC 2006).

The main purpose of SEI mapping is to describe the ecological diversity of a given area, and determine the type and extent of vulnerable and rare elements (RISC 2006). The SEI standard describes an overview of the assessment process as follows:

'The SEI classification uses two primary groupings of ecosystems: *Sensitive Ecosystems* and *Other Important Ecosystems*. Within each of these groups a series of classes and subclasses is defined that provides a general level of ecosystem description that is appropriate for public education and local planning exercises. Sensitive Ecosystem categories are generalised groupings of ecosystems that share many characteristics, particularly ecological sensitivities, ecosystem processes, at-risk status, and wildlife habitat values. Criteria for ecological sensitivity include: *environmental specificity*, susceptibility to hydrological changes, soil erosion, especially on shallow soils, spread of invasive alien plants, and sensitivity to human disturbance. Other Important Ecosystems have significant ecological and biological values associated with them that can be identified and mapped, although they are not defined as Sensitive Ecosystems because they have been substantially altered by human use. Consideration of Other Important Ecosystems is critical to capturing key elements of biodiversity of some project areas; they sometimes provide recruitment sites for ecosystems at risk or important wildlife habitat requiring recovery or restoration.'

The objectives of the 2014 field survey plan were to:

- Sample the accuracy of the SEI mapping at a survey intensity level 4 with a goal of 20% or more of the polygons sampled.
- Sample of the full range of ecosystem types that occur in the study area.
- Complete conservation evaluation assessments on the full range of ecosystem types, with a focus on ecosystems at risk.

2.0 Study Area

The DIEM Project area encompasses the Discovery Islands archipelago, 72,000 terrestrial hectares that includes Quadra, Cortes, Read, Maurelle, Sonora, Stuart, East Redonda, West Redonda and the Rendezvous Islands (Figure 2.1). Cortes Island and the southern portion of Quadra Island were previously mapped Sunshine Coast SEI project (MOE 2005).

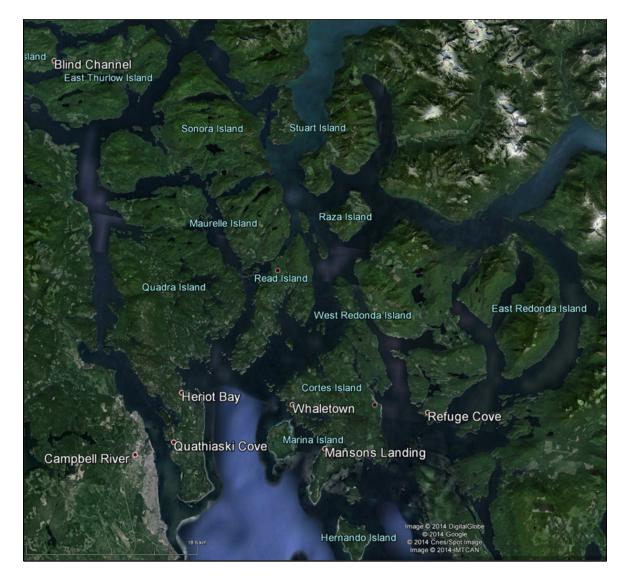


FIGURE 2.1. DIEM SEI STUDY AREA (GOOGLE EARTH 2014)

The DIEM project is located within three Biogeoclimatic Zones the Coastal Western Hemlock (CWH), Mountain Hemlock (MH) and Coastal Mountain Heather Alpine (CMA). Multiple subzone and variants occur, as summarized below (Table 2.1). Section 3.1 contains expanded descriptions of each zone and the potential site series.

BGC Name	Subzone Name (Variant)	Location
CMAunp	undifferentiated and parkland	Restricted to a very small portion on the top of East Redonda.
CWHdm	dry maritime	Covers all of Stuart, and the majority of Raza, West Redonda and
CWHam		East Redonda.
CWHmm1	very wet maritime	Restricted to high elevations of Sonora, Maurelle and Quadra.
CWIMMI	(submontane)	
CWHvm1	very wet maritime	Only on mid to high elevations of East and West Redonda and
CWINII	(submontane)	Raza.
CWHvm2	very wet maritime (montane)	Restricted to higher elevations (small total area) of East and West
CWHWHZ	very wet manane (montane)	Redonda and Raza.
		Small portions of the southern ends of Read and West Redonda
CWHxm1	very dry maritime (eastern)	(and large portions of Quadra and Cortes that we mapped for the
		Sunshine Coast SEI project).
CWHxm2	very dry maritime (western)	Covers the majority of Sonora, Maurelle, Read and Quadra.
MHmm1	moist maritime (windward)	Only on high elevations of East Redonda.

TABLE 2.1. BIOGEOCLIMATIC ZONES, SUBZONES AND VARIANTS FOUND IN THE STUDY AREA

3.0 Methodology

Field surveys were completed as per provincial methodologies, specifically the Field Guide to Describing Ecosystems in the Field (MOF 2010) and the Standard for Mapping Ecosystems at Risk (RISC 2006). Using the goal of at least 20% of the polygons sampled (survey intensity 4). Full and ground plots included the completion of the Conservation Data Centre conservation evaluation form, while visual plots included a lessor amount of data while still meeting the objectives of the CDC form when possible.

Ground and full plots were assessed using the standard Site Visit Form and portions of the FS882 forms from Describing Ecosystems in the Field and located with a Garmin 60sx GPS. Visual plots were primarily recorded digitally using a custom data collection form on a Panasonic ruggedized tablet with the location digitized directly on ArcPad 10.

Full and ground plots were classified to the site series level, while visuals were primarily classified using the SEI classes and subclasses. Section 3.1 describes the potential site series for the study area based on BGC zones, and Section 3.2 describes the SEI classes and subclasses developed for the project.

3.1 BGC Site Series

The following section contains the full range of BGC site series that are recognized in the eight subzones that occur in the study area. Site series, and the process used to name and identify them is described by Green and Klinka (1994) as follows:

"Within each biogeoclimatic subzone or variant a recurring pattern of sites reflects variation in soil and physiographic properties. These sites are classified based on their potential to produce similar plant communities at late successional stages. Sites with similar vegetation potential also have similar environmental properties, particularly soil moisture and soil nutrient regimes. Site classification units can be identified using these characteristic environmental properties, as well as characteristic stable (e.g., later successional stage) plant communities. It is important to recognize that a particular site classification unit (e.g., FdHw - Salal) can support a variety of plant communities depending on successional stage, but should ultimately result in one kind of near-climax or climax plant community.

Three categories are recognized within the site classification (site association, site series, site type), with site series representing the most commonly used category for field use. Site series encompass sites capable of producing similar late seral or climax plant communities within a biogeoclimatic subzone or variant. A site series is specific to a subzone or variant; however, the stable, late seral or climax plant community encompassed by the site series may occur in more than one biogeoclimatic unit. Site associations represent sites capable of producing similar late seral or climax vegetation over a range of climates. For example, the FdHw - Salal site association spans the CWHmm, CWHdm, and CWHxm subzones. Site types are the most detailed category, representing site series subdivided according to specific soil properties such as texture or depth. The application of site types is generally restricted to detailed studies or management plans.

Site associations are named using one or two tree species, followed by one or two understorey species derived from the near-climax plant community on which they are based. While the species used in the name often reflect the appearance of these communities, they may include less common species to ensure a unique name within the provincial classification.

Site series use the same name as the site association, preceded by the appropriate biogeoclimatic subzone or variant symbol. For example, CWHxm/FdHw - Salal represents a common site series in the CWHxm subzone. Site series are numbered with a two-digit code, which indicates its position on the edatopic grid. Within a subzone or variant, the zonal site series is always numbered 01. Remaining site series are numbered sequentially from the driest to the wettest, and from nutrient poorest to richest for units with similar moisture regime."

CMAunp

The following description of the CMAunp was adapted from the BC Ministry of Forests (2014):

"The alpine occurs at high elevations throughout British Columbia and has the harshest climate of any of the biogeoclimatic zones in British Columbia. Temperatures are cold for most of the year, with much wind and snow. Temperatures remain low even during the growing season, which has an exceptionally short frost-free period. Mean annual temperatures range from 0° to 4°C, and the average monthly temperature stays below 0°C from 7 to 11 months of the year. The mean temperature of the warmest month is less than 10°C. A great deal of precipitation falls in this zone, mostly as snow.

The Coastal Mountain-heather Alpine Zone (CMA) occurs along the windward spine of the Coast Mountains and the mountains of Vancouver Island and the Queen Charlotte islands where the snowpack is deep and summers are moderated by maritime influences.

The treeline in this environment is lowered by heavy and prolonged snow cover and can be as much as 900 m lower than in the alpine of comparable latitudes in the dry interior. Alpine begins at 1600 m in the south, descending to 1000 m in the north. Though this zone is extensive, the most of the land area is occupied by glaciers or recently exposed bare rock at the elevation of true alpine."

There are no site series recognized in the CMAunp.

CWHdm

The following description of the CWHdm was adapted from the BC Ministry of Forests (2014):

"DISTRIBUTION: The CWHdm occurs at low elevations on the mainland and immediately adjacent islands. It extends from Hardwicke Island in the north to the Chilliwack River in the southeast. Along the Sunshine Coast and lower Fraser Valley it occurs above and adjacent to the CWHxm, respectively. Elevational limits range from sea level (or above CWHxm if present) to approximately 650 m (lower in wetter valleys).

CLIMATE: The CWHdm has warm, relatively dry summers and moist, mild winters with little snowfall. Growing seasons are long, and feature only minor water deficits on zonal sites.

VEGETATION: Forests on zonal sites are dominated by Douglas-fir, western red cedar, and western hemlock. Major understorey species include salal, red huckleberry, *Hylocomium splendens*, *Kindbergia oregana*, *Rhytidiadelphus loreus*, and *Plagiothecium undulatum*. Less common species include dull Oregongrape, vine maple, bracken, and swordfern."

Table 3.1-1 contains a list of site series that are recognized in the CWHdm.

BGC Zone	BGC Subzone	BGC Variant	Site Series	Status	Site Series Description
CWH	dm	-	01	Blue	Hw - Flat moss
CWH	dm	-	02	Red	FdPl - Cladina
CWH	dm	-	03	Blue	FdHw - Salal
CWH	dm	-	04	Blue	Fd - Sword fern
CWH	dm	-	05	Blue	Cw - Sword fern
CWH	dm	-	06	Red	HwCw - Deer fern
CWH	dm	-	07	Blue	Cw - Foamflower
CWH	dm	-	08	Red	Ss -Salmonberry
CWH	dm	-	09	Blue	Act - Red-osier dogwood
CWH	dm	-	10	Blue	Act - Willow
CWH	dm	-	11		PI - Sphagnum
CWH	dm	-	12	Blue	CwSs - Skunk cabbage
CWH	dm	-	13	Red	Cw - Salmonberry
CWH	dm	-	14	Red	Cw - Black twinberry
CWH	dm	-	15	Blue	Cw - Slough sedge
CWH	dm	-	Wm05	Blue	Cattail
СШН	dm	-	Wb50	Blue	Labrador-tea / western bog-laurel / peat-mosses

TABLE 3.1-1. CWHDM SITE SERIES (MOF 2011)

CWHmm1

The following description of the CWHmm1 was adapted from the BC Ministry of Forests (2014):

"DISTRIBUTION: The CWHmm1 is mainly restricted to Vancouver Island where it occurs along the leeward side of the Vancouver Island Ranges above the CWHxm subzone. It also occurs at higher elevations on Quadra, Sonora, and West and East Thurlow islands. It has a discontinuous distribution, often occurring in the upper portions of valleys draining the eastern slopes of the Vancouver Island Ranges. Elevational limits range from approximately 450 to 700 m (above the CWHxm if present), although it extends lower in isolated cases.

CLIMATE: The CWHmm1 has climatic conditions intermediate between the CWHxm and the CWHvm subzones. It has moist, mild winters and cool but relatively dry summers. Historically, dry summers have occasionally resulted in stand-replacing wildfires, which have contributed to the abundance of Fd in this variant. Climatic data are unavailable for the CWHmm1.

VEGETATION: Forests on zonal sites are dominated by western hemlock, amabilis fir, and Douglas-fir. Shrub layers commonly include red huckleberry, Alaskan blueberry, and, to a lesser extent, salal and dull Oregon-grape. *Hylocomium splendens, Rhytidiadelphus loreus*, and *Rhytidiopsis robusta* dominate the well-developed moss layer. Stands established following fire tend to have a greater component of Douglas-fir and its associated understorey vegetation (more salal, dull Oregon-grape, vanilla-leaf, etc.)."

Table 3.1-2 contains a list of site series that are recognized in the CWHmm1.

BGC Zone	BGC Subzone	BGC Variant	Site Series	Status	Site Series Description
CWH	mm	1	01	Blue	HwBa - Pipecleaner moss
CWH	mm	1	02	Blue	FdHw - Salal
CWH	mm	1	03	Red	HwCw - Salal
CWH	mm	1	04	Blue	CwHw - Sword fern
CWH	mm	1	05	Red	BaCw - Foamflower
CWH	mm	1	06	Red	HwBa - Deer fern
CWH	mm	1	07	Red	BaCw - Salmonberry
CWH	mm	1	08		Ss - Salmonberry
CWH	mm	1	09	Blue	Act - Red-osier dogwood
CWH	mm	1	10		Act - Willow
CWH	mm	1	11		Pl - Sphagnum
CWH	mm	1	12	Blue	CwSs - Skunk cabbage
CWH	mm	1	Wf52	Red	Sweet gale - Sitka sedge
CWH	mm	1	Wf53	Red	Slender sedge - White beak-rush
CWH	mm	1	Wm09		Inflated sedge
CWH	mm	1	Wm51	Red	Three-way sedge

TABLE 3.1-2. CWHMM1 SITE SERIES (MOF 2011)

CWHvm1

The following description of the CWHvm1 was adapted from the BC Ministry of Forests (2014):

"DISTRIBUTION: The CWHvm1 is the most extensive biogeoclimatic unit in the Vancouver Forest Region. It occurs on the windward slopes of Vancouver Island as far south as Jordan River, and on both sides of Vancouver Island north of Kelsey Bay. Its northern limit on Vancouver Island occurs just north of Port Hardy. On the mainland, the CWHvm1 occurs along the windward slopes of the Coast Mountains, from the Fraser River to the northern boundary of the Vancouver Forest Region. In the south an isolated occurrence is mapped in Garne Creek, 15 km west of Hope; otherwise it only occurs west of Harrison Lake. The elevational limits range from sea level (or above CWHxm or CWHdm if present) to approximately 650 m (600 m on Vancouver Island).

CLIMATE: The CWHvm1 has a wet, humid climate with cool summers and mild winters featuring relatively little snow. Growing seasons are long. Although precipitation is high, it can vary considerably, from lower values in the local rainshadow of northeastern Vancouver Island (Port Hardy, Port Alice, Coal Harbour, and Alice Lake areas), to the highest values where air masses lift over steep mountains (e.g., Ocean Falls).

VEGETATION: Forests on zonal sites are dominated by western hemlock, amabilis fir, and lesser amounts of western red cedar. The understorey generally features a well developed shrub layer dominated by red huckleberry and Alaskan blueberry, and a well-developed moss layer dominated by *Hylocomium splendens* and *Rhytidiadelphus loreus*. Herbs are sparse and include minor amounts of deer fern, five-leaved bramble, bunchberry, and queen's cup. Subdued terrain on the west coast and northern end of Vancouver Island features very old successional stages dominated by western red cedar, western hemlock and salal."

Table 3.1-3 contains a list of site series that are recognized in the CWHvm1.

BGC Zone	BGC Subzone	BGC Variant	Site Series	Status	Site Series Description
CWH	vm	1	01		HwBa - Blueberry
CWH	vm	1	01		HwBa - Blueberry, Salal
CWH	vm	1	02		HwPl - Cladina
CWH	vm	1	03	Blue	HwCw - Salal
CWH	vm	1	04	Blue	CwHw - Sword fern
CWH	vm	1	05		BaCw - Foamflower
CWH	vm	1	06	Blue	HwBa - Deer fern
CWH	vm	1	06		HwBa - Deer fern, Salal

TABLE 3.1-3. CWHVM1 SITE SERIES (MOF 2011)

CWH	vm	1	07		BaCw - Salmonberry
CWH	vm	1	08	Blue	BaSs - Devil's club
CWH	vm	1	09	Red	Ss - Salmonberry
CWH	vm	1	10	Blue	Act - Red-osier dogwood
CWH	vm	1	11		Act - Willow
CWH	vm	1	12		CwYc - Goldthread
CWH	vm	1	13		PI - Sphagnum
CWH	vm	1	14	Blue	CwSs - Skunk cabbage
CWH	vm	1	15		YcHm - Skunk cabbage
CWH	vm	1	Wb50	Blue	Labrador tea - Bog-laurel - Peat-moss
CWH	vm	1	Wf50		Narrow-leaved cotton-grass - Peat-moss
CWH	vm	1	Wf51	Red	Sitka sedge - Peat-moss
CWH	vm	1	Ws06	Blue	Sitka willow - Sitka sedge

CWHvm2

The following description of the CWHvm2 was adapted from the BC Ministry of Forests (2014):

"DISTRIBUTION: The CWHvm2 occurs at higher elevations, above the CWHvm1. Elevational limits range from approximately 650-1000 m in the south to 450-800 m in the north. It grades into the MH zone above.

CLIMATE: The CWHvm2 has a wet, humid climate with cool, short summers and cool winters featuring substantial snowfall. Compared with the submontane variant, the CWHvm2 has cooler temperatures, shorter growing seasons, and heavier snowfall, with snowpacks persisting throughout the winter.

VEGETATION: Forests on zonal sites are dominated by western hemlock, amabilis fir, and, to a lesser extent, western red cedar, yellow cedar, and mountain hemlock. The latter two species become more common with increasing elevation and wetter sites. Major understorey species include Alaskan blueberry, five-leaved bramble, *Hylocomium splendens*, *Rhytidiadelphus loreus*, and *Rhytidiopsis robusta."*

Table 3.1-4 contains a list of site series that are recognized in the CWHvm2.

TABLE 3.1-4.	CWHVM2 SITE SERIES	(MOF 2011)
--------------	--------------------	------------

BGC Zone	BGC Subzone	BGC Variant	Site Series	Status	Site Series Description
CWH	vm	2	01		HwBa - Blueberry
CWH	vm	2	02		HwPI - Cladina

СМН	vm	2	03	Blue	HwCw - Salal
CWH	vm	2	04	Blue	CwHw - Sword fern
CWH	vm	2	05		BaCw - Foamflower
CWH	vm	2	06	Blue	HwBa - Deer fern
CWH	vm	2	07		BaCw - Salmonberry
CWH	vm	2	08	Blue	BaSs - Devil's club
CWH	vm	2	09		CwYc - Goldthread
CWH	vm	2	10		PI - Sphagnum
CWH	vm	2	11		CwYc - Skunk cabbage
CWH	vm	2	12		YcHm - Skunk cabbage
CWH	vm	2	Wf51	Red	Sitka sedge - Peat-moss
CWH	vm	2	Wm09		Inflated sedge
CWH	vm	2	Ws06	Blue	Sitka willow - Sitka sedge

CWHxm1 and CWHxm2

The following description of the CWHxm was adapted from the BC Ministry of Forests (2014):

"DISTRIBUTION: The CWHxm occurs at lower elevations along the east side of Vancouver Island (above the CDF where present) as far north as Kelsey Bay, and on the islands around southern Johnstone Strait. It also occurs inland on Vancouver Island along major valleys from Nimpkish Valley in the north to Cowichan Valley in the south. On the mainland it extends up the south side of the Fraser River as far as Chilliwack, and along the Sunshine Coast as far as Desolation Sound. Elevational limits range from sea level (or above the CDFmm where present) to approximately 700 m. Near the wetter parts of its distribution, the upper limit is lower (e.g., 150 m on Gambier and Bowen islands, and in the Fraser Valley).

CLIMATE: The CWHxm has warm, dry summers and moist, mild winters with relatively little snowfall. Growing seasons are long, and feature water deficits on zonal sites.

VEGETATION: Forests on zonal sites are dominated by Douglas-fir, accompanied by western hemlock and minor amounts of western hemlock. Major understorey species include salal, dull Oregon-grape, red huckleberry, *Hylocomium splendens*, and *Kindbergia oregana*. Less common species include vanilla-leaf, sword fern, twinflower, and bracken."

Table 3.1-5 and 3.1-6 contains a list of site series that are recognized in the CWHxm1 and xm2.

TABLE 3.1-5. CWHXM1 SITE SERIES (MOF 2011)

BGC	BGC BGC	Site	Status	Site Series Description
-----	---------	------	--------	-------------------------

Zone	Subzone	Variant	Series		
CWH	xm	1	01	Red	HwFd - Kindbergia
CWH	xm	1	02	Red	FdPl - Cladina
CWH	xm	1	03	Blue	FdHw - Salal
CWH	xm	1	04	Blue	Fd - Sword fern
CWH	xm	1	05	Blue	Cw - Sword fern
CWH	xm	1	06	Red	HwCw - Deer fern
CWH	xm	1	07	Blue	Cw - Foamflower
CWH	xm	1	08	Red	Ss - Salmonberry
CWH	xm	1	09	Blue	Act - Red-osier dogwood
CWH	xm	1	10	Blue	Act - Willow
CWH	xm	1	11	Blue	PI - Sphagnum
CWH	xm	1	12	Blue	CwSs - Skunk cabbage
CWH	xm	1	13	Red	Cw - Salmonberry
CWH	xm	1	14	Red	Cw - Black twinberry
CWH	xm	1	15	Blue	Cw - Slough sedge
CWH	xm	1	Em03	Red	Seashore saltgrass Herbaceous Vegetation
CWH	xm	1	Wb50	Blue	Labrador tea - Bog-laurel - Peat-moss
CWH	xm	1	Wf10		Hudson Bay clubrush - Red hook-moss
CWH	xm	1	Wf52	Red	Sweet gale - Sitka sedge
CWH	xm	1	Wf53	Red	Slender sedge - White beak-rush
CWH	xm	1	Wm05	Blue	Cattail
CWH	xm	1	Wm06	Blue	Great bulrush
CWH	xm	1	Wm09		Inflated sedge
CWH	xm	1	Wm50	Blue	Sitka sedge - Hemlock-parsley
CWH	xm	1	Ws50		Hardhack - Sitka sedge
CWH	xm	1	Ws53	Blue	Western redcedar-sword fern-skunk cabbage

TABLE 3.1-6. CWHXM2SITE SERIES (MOF 2011)

BGC Zone	BGC Subzone	BGC Variant	Site Series	Status	Site Series Description
CWH	xm	2	01	Red	HwFd - Kindbergia
CWH	xm	2	02	Red	FdPl - Cladina
CWH	xm	2	03	Blue	FdHw - Salal
CWH	xm	2	04	Blue	Fd - Sword fern
CWH	xm	2	05	Blue	Cw - Sword fern
CWH	xm	2	06	Red	HwCw - Deer fern
CWH	xm	2	07	Blue	Cw - Foamflower
CWH	xm	2	08	Red	Ss - Salmonberry
CWH	xm	2	09	Blue	Act - Red-osier dogwood

CWH	xm	2	10	Blue	Act - Willow
CWH	xm	2	11	Blue	PI - Sphagnum
CWH	xm	2	12	Blue	CwSs - Skunk cabbage
CWH	xm	2	13	Red	Cw - Salmonberry
CWH	xm	2	14	Red	Cw - Black twinberry
CWH	xm	2	15	Blue	Cw - Slough sedge
CWH	xm	2	Wb50	Blue	Labrador tea - Bog-laurel - Peat-moss
CWH	xm	2	Wf52	Red	Sweet gale - Sitka sedge
CWH	xm	2	Wf53	Red	Slender sedge - White beak-rush
CWH	xm	2	Wm05	Blue	Cattail
CWH	xm	2	Wm51	Red	Three-way sedge
CWH	xm	2	Ws50		Hardhack - Sitka sedge

MHmm1

The following description of the MHmm1 was adapted from the BC Ministry of Forests (2014):

"DISTRIBUTION: The MHmm1 occurs at high elevations on Vancouver Island and in maritime areas of the mainland coast. The lower elevational limit is between 800 and 1000 m and the upper limit is between 1100 and 1350 m.

CLIMATE: The MHmm1 has long, wet, cold winters and short, cool moist summers. Frozen soils are rare due to the insulating snowpack, but growing season frosts are common. Total snowfall is high, resulting in substantial snowpacks that can persist into July.

VEGETATION: Forests on zonal sites are dominated by Ba and Hm, and, to a lesser extent, yellow cedar. Alaskan blueberry, oval-leaved blueberry, and *Rhytidiadopsis robusta* are prominent in the understorey. Vegetation and stand characteristics in the MHmm1 are strongly influenced by local topography, which affects timing and pattern of snowmelt. Upper elevations grade into discontinuous forests of the parkland subzone (MHmmp1)."

Table 3.1-7 contains a list of site series that are recognized in the CWHdm.

TABLE 3.1-7. MHMM1 SITE SERIES (MOF 2011)

BGC Zone	BGC Subzone	BGC Variant	Site Series	Site Series Description
MH	mm	1	01	HmBa - Blueberry
MH	mm	1	02	HmBa - Mountain-heather
МН	mm	1	03	BaHm - Oak fern
MH	mm	1	04	HmBa - Bramble

МН	mm	1	05		BaHm - Twistedstalk
МН	mm	1	06		HmYc - Deer-cabbage
МН	mm	1	07		YcHm - Hellebore
МН	mm	1	08		HmYc - Sphagnum
МН	mm	1	09		YcHm - Skunk cabbage
МН	mm	1	Wf51	Red	Sitka sedge - Peat-moss

3.2 SEI Classes and Subclasses

Sensitive Ecosystem (SE) classes represent generalized groupings of ecosystems that share many characteristics, particularly ecological sensitivities, ecological processes, rarity and wildlife habitat values (Iverson and Cadrin 2003). Ecosystems are classed as sensitive in this report if they have one or more of the following attributes:

- are rare or of restricted distribution
- have high biodiversity
- have high values as habitat, especially for known or potentially occurring species at risk
- are sensitive to disturbance and human impacts

Sensitive Ecosystem classes (Table 3.2-1) for DIEM were adopted from previous SEI projects on Vancouver Island (McPhee et al. 2000) and the Central Okanagan (Iverson and Cadrin 2003) as needed.

Other Important Ecosystems (OIE) provide values such as habitat, wildlife corridors and ecosystem services but in most cases have been modified by human use and are not usually considered as environmentally significant or sensitive as designated SEs (Table 3.2-2).

The Not Sensitive (NS) class is a generalized catch all for all other mapped polygons that do not contain significant ecological values, or contain significant recent of historic disturbance (Table 3.2-3).

SEI Class	SEI Subclass	Brief Description
OF: Old Forest		Forests > 140 yrs
OF	co: coniferous	Conifer > 75% of stand
OF	mx: mixed	Stand composition > 25% conifer and > 25% broadleaf
OF	vo: very old	Forests > 400 yrs
MF: Mature Forest		Forests > 80 yrs, < 140 yrs, > 5 ha
MF	co: coniferous	Conifer-dominated (> 75% of stand composition)

TABLE 3.2-1. SEI CLASSES AND SUBCLASSES

MF	mx: mixed	Stand composition > 25% conifer and > 25% broadleaf
WD: Woodland		Dry site, open stands with between 10 and 25% tree cover. Tree
		species on these sites in the Discovery Islands are usually pine, arbutus
		and Douglas Fir. Woodlands in this area also tend to occur with
		herbaceous outcrops.
WD	co: coniferous	Conifer > 75% of stand
WD	mx: mixed	Conifer > 25% and broadleaf > 25% of composition
RI: Riparian		Ecosystems associated with and influenced by freshwater. Nutrient-
		rich, rapid tree growth and dense under-stories. Higher soil moisture
		and light conditions. Indicative vegetation includes salmon berry,
		devils club, elder berry, red cedar, alder, skunk cabbage, and ferns.
RI	ff: fringe	Narrow band near ponds or lake shorelines, or streams with no
		floodplain. These areas were initially mapped by buffering freshwater
		atlas streams and lakes by 20m.
RI	fh: high bench	High bench floodplain terraces
RI	fm: mid bench	Mid bench floodplain terraces
RI	fl: low bench	Low bench floodplain terraces
RI	gu: gully	Watercourse is in a steep V-shaped gully. Generally dense sword fern
		slopes with salmon berry beginning toward the foot slope.
RI	ri: river	Large river watercourses including gravel bars
RI	ca: canyon	Watercourse is within a steep sided U-shaped canyon
WN: Wetland		Terrestrial – freshwater transitional areas.
WN	bg: bog	Nutrient-poor wetlands on peat-moss organic soils
WN	fn: fen	Groundwater-fed sedge-peat wetlands
WN	ms: marsh	Graminoid or forb-dominated nutrient-rich wetlands
WN	sp: swamp	Shrub or tree-dominated wetlands
WN	sw: shallow water	Permanently flooded, water less than 2m deep at mid-summer.
HB: Herbaceous		Non-forested ecosystems; usually shallow soils, often with bedrock
		outcrops. In the Discovery Islands this unit is often occurs as relatively
		small openings within woodland ecosystems. These mossy rock
		outcrops with grasses and low shrubs are frequent along the rocky
		shoreline, and higher elevation, south facing slopes.
HB	hb: herbaceous	Inland sites dominated by herbs; shrub cover < 20%: generally shallow
		soils.
НВ	cs: coastal	Influenced by proximity to the ocean: > 20% vegetation cover of
	herbaceous	grasses, herbs, mosses and lichens

НВ	vs: vegetated	Low-lying rocky shorelines with less than 20% vegetation.
	shoreline	
HB	sh: shrub	Shrubs > 20% cover, with grasses and herbs.
SV: Sparsely		Areas with 5 – 10% vascular vegetation; may have mosses, liverwort
Vegetated		and lichen cover. In the Discovery Islands this ecosystem most often
		occurs along rocky shoreline.
SV	cl: cliff	Steep slopes, often with exposed bedrock.
SV	ro: rock outcrop	Rock outcrops – areas of bedrock exposure.
SV	ta: talus	Dominated by rubbly blocks of rock
ES: Estuarine		Ecosystems at marine, freshwater & terrestrial interface
ES	sp: swamp	Treed or shrubby ecosystems
ES	md: meadow	Tall forb and graminoid vegetation that develops in the high intertidal
		and supra-tidal zones of estuaries
ES	ms: marsh	Vegetation of salt-tolerant emergent graminoids and succulents,
		flooded and exposed during most tidal cycles
ES	tf: tidal flat	Large flats of silts, sands, or pebbles flooded and exposed in most tidal
		cycles – macroalgae common
IT: Intertidal &		Ecosystems at marine and terrestrial interface
shallow sub-tidal		
IT	mf	Mudflats
IT	bs	Beaches and rocky shorelines
IT	el	Intertidal and shallow sub-tidal eelgrass beds
FW: Lakes and		
Ponds (Freshwater)		
FW	la: lake	Open water > than 2 m deep and generally > 50 ha
FW	pd: pond	Open water > 2 m deep and generally < 50 ha
KA: Karst		Areas of karst topography. In the Discovery Islands karst areas tend to
		occur under thick layers of till and support productive forest land.

TABLE 3.2-2. OIE CLASSES AND SUBCLASSES

Other important Ecosystem Class	OEI Subclass	Brief Description
MF: Mature Forest		Small patches of forest – stands > 80 yrs, < 250 yrs
MF	co: coniferous	Conifer > 75% of stand, < 5ha

MF	mx: mixed	Stand composition > 25% conifer and > 25% broadleaf, < 5ha
MS: Maturing Second Growth		Second growth forest stands > 60 yrs, < 80 yrs that lack mature structural stage elements.
SG	co: coniferous	Conifer > 75% of stand, < 5ha
SG	mx: mixed	Stand composition > 25% conifer and > 25% broadleaf, < 5ha

TABLE 3.2-3. NS CLASSES AND SUBCLASSES

Not Sensitive	NS Subclass	Brief Description
YF: Young Forest		Large patches of forest – stands > 30 yrs, < 80 yrs
YF	co: coniferous	Conifer-dominated (> 75% of stand composition)
YF	mx: mixed	Stand composition > 25% conifer and > 25% broadleaf
YF	bd: broadleaf	Broad-leaf dominated (> 75% of stand composition)
DE: Disturbed		Areas of permanent or significant disturbance.
Ecosystems		
DE	sh: shrub	Old clearings and logging - Shrubs > 20% cover, with grasses and herbs.
DE	ps: pole sapling	Trees > 10 m tall, typically densely stocked, and have overtopped
		shrub and herb layers; younger stands are vigorous (usually > 15–20
		years old)
DE	rr: rural	Areas of permanent development for residential, commercial or
	residential	industrial purposes.
DE	rz: roads	Roads

4.0 Results

Field verification of the SEI mapping was completed over 6 days from April 27 to May 2, 2013 and 21 days from May 4 to 25, 2014. Visual, ground and full plots were completed on all the main islands in the study area, and several of the smaller islands. Due to access limitations, the majority of the plots were located near the ocean, or within short hikes. With the exception of East Redonda, every island was circled via boat, and the majority of coastal SEI polygons visually verified. Ground and full samples were primarily placed in pre-determined locations in an effort to sample the most intact ecosystems, and the full range of ecosystem types. The inland and higher elevation areas of several islands were not sampled due to access constraints.

4.1 BGC Site Series

Tables 4.1-1 and 4.1-2 contain a summary of the number, type and location of sample plots completed for the project, and Figure 4.1-1 presents a map of the plot locations. The site series was determined for each of the full and site visit plots, and occasionally for visual plots. Appendix 1 contains the complete plot data collected at from each full and site visit plot, including site conditions, vegetation, and general wildlife observations.

BEC Subzone		Total			
DEC SUBZONE	Full	Full Site Visit Visual		10101	
CMAunp	0	0	0	0	
CWHdm	1	28	417	446	
CWHmm1	1	8	32	41	
CWHvm1	0	0	28	28	
CWHvm2	0	0	4	4	
CWHxm1	3	15	70	88	
CWHxm2	13	91	1,541	1,645	
MHmm1	0	0	0	0	
Total	18	142	2,092	2,252	

TABLE 4.1-1. SUMMARY OF NUMBER, TYPE AND BGC SUBZONE OF SAMPLE PLOTS.

BEC Subzone	Quadra	Read	Maurelle	Sonora	Stuart	Raza	E. Redonda	W. Redonda	Other
							кеаопаа	Reaonaa	
CMAunp									
CWHdm					77	77	100	183	9
CWHmm1	7		1	33					
CWHvm1						14	13	1	
CWHvm2						1	2	1	
CWHxm1	9	24						44	11
CWHxm2	692	280	259	320					94
MHmm1									
Total	708	304	260	353	77	92	115	229	114

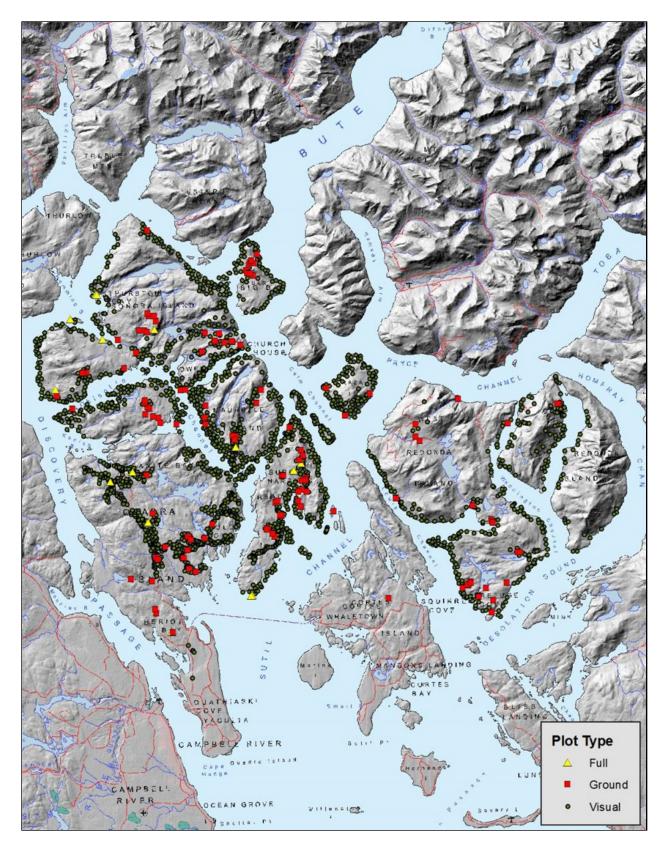


FIGURE 4.1-1. MAP OF SAMPLE PLOT LOCATIONS

4.2 SEI Classes and Subclasses

The draft SEI class and subclasses were assessed in the field to determine if:

- they occurred within the study area;
- the descriptions were accurate; and
- they describe all the ecosystem types observed.

The following section provides a summary of the revised SEI classes and subclasses, along with proposed new subclasses and those which were not used. Each class and subclass is described in detail, including representative photographs, site conditions and dominant vegetation.

Old Forest (OF)

Old Forest are defined as forests where tree ages are mostly 140 years or older. These stands are generally conifer-dominated with complex vertical structure. Three subclasses are recognized:

- **co** conifer-dominated forest stands (>75% conifer composition) where canopy tree ages mostly 140– 400 years old.
- mx mixture of coniferous and broadleaf trees (<75% coniferous and < 75% broadleaf composition) where canopy tree ages mostly 140 400 years old.
- vo very old: canopy trees are mostly 400 years old or older.

To date, only the OF:co subclass has been identified in the DIEM study area. The OF class is generally represented in three different situations:

- 1. Small patches to large, continuous stands of high elevation old forests with little to no sign of human disturbances. These OF stands are generally located in difficult areas to access (higher elevation and rocky areas) and typically contain trees of lesser timber value. They were likely either too far from the ocean, or too poor quality at the time, to have been logged to date. However, relative to the forest cover that remains on much of the DIEM study area, they are becoming increasing valuable and being targeted by conventional or heli-logging. Figure 4.2-1 presents an OF located on higher elevations of Sonora Island. While the individual trees in these stands are not as large or impressive as lower elevation stands, the lack of any significant disturbance indicates they are intact old forests.
- Small patches in marginal areas (rocky outcrops, wet depressions) where previous logging was either difficult, or the trees were considered to be inferior at the time. Figure 4.2-2 shows an example of a small OF patch in a wet, swampy area on Read Island that remains relatively intact, while all of the surrounding area was logged at least once.

3. Small components of young or mature forests. This is one of the more common types of OF remaining on many of the islands. Small patches of old trees, or more often individual old vets that were not logged during the first pass in the early 1900s, were found sporadically through an otherwise young stand. These areas are typically not considered to be old growth stands as they represent a small portion of the total number of trees in a given area. Figure 4.2-3 represents a remnant old tree in an otherwise young stand on Read Island that is typical of this situation.

FIGURE 4.2-1. OLD YELLOW CEDAR CONIFER FOREST ON SONORA ISLAND.

FIGURE 4.2-2. OLD FOREST ON READ ISLAND.

FIGURE4.2-3. OLD VETERAN DOUGLAS-FIR ON READ ISLAND.

Mature Forest (MF)

Mature Forests are generally >80 and < 250 years old, with no disturbance for at least 80 years. These forests are not typically as structurally complex as old forest ecosystems, but can function as essential habitat areas for many wildlife species and as primary connections between ecosystems in a highly fragmented landscape. A minimum polygon size of 5 ha is proposed for inclusion in the MF sensitive ecosystem class. MF polygons of <5ha would be considered an Other Important ecosystem. Two subclasses are recognized:

• **co** – conifer dominated (> 75% coniferous species).

• **mx** – mixed conifer and deciduous (<75% coniferous and < 75% broadleaf composition).

To date, very little MF:mx has been identified in the DIEM study area. This result is expected in a landscape that is dominated coniferous forests where mixed and broadleaf stands are general an early seral feature. No MF:mx forests were sampled with a full or ground/site plot.

MF:co is relatively common in the study area, with 34 full or ground/site sample plots located in MF:co and over 400 visual plots. The vast majority of the MF is second growth forests. Some sites were classified as MF due to structural attributes; however the lack of an obvious disturbance history may indicate that they are in fact old forests growing on low productivity, marginal sites, that will never produce large, old trees. The MF is typically dominated by western red cedar, western hemlock, and/or Douglas-fir. Western hemlock is typically more abundant that expected due to the significant disturbance history of most stands. Site conditions, disturbance, and understory vegetation is varied base on location, topography and proximity to the ocean or human habitation. Figure 4.2-4 (Sonora Island) is representative of a typical MF stand, with larger maturing trees common, along with multiple other age classes. Figure 4.2-5 (Sonora Island) is a less common occurrence; a high elevation stand with no obvious disturbance history, but lacking the structural complexity that would classify it as an OF.

FIGURE 4.2-4. MATURE CONIFER FOREST ON SONORA ISLAND.

FIGURE 4.2-5. MATURE YELLOW CEDAR CONIFER FOREST ON SONORA ISLAND.

Woodland (WD)

Woodlands are open forests, generally between 10 and 30% tree cover. They are found on dry sites, typically on south facing slopes of rocky knolls and bedrock-dominated areas. The stands can be conifer dominated or mixed conifer and arbutus stands, and because of the open canopy, will often include non-forested herbaceous openings, on shallow soils and bedrock outcroppings. Two subclasses are recognized:

- **co** conifer dominated ecological woodlands (greater than 75% coniferous composition).
- **mx** mixed conifer and broadleaf ecological woodlands (minimum of 25% composition of each group comprises the total tree cover)

In addition to the two subclasses, there is significant difference to the WD that occurs near the coast, versus those that occur inland and in higher elevations. Coastal woodland (either conifer or mixed) often contains a much high diversity of shrubs and herbs, and those that occur on ocean edge, often have richly vegetated seepage sites. Coastal woodlands are typically mixed in the southern portion of the study area, while Arbutus is largely or totally absent in the north (Figure 4.2-6). Interior and higher elevation woodlands are less likely to contain arbutus and are therefore typically only Wd:co. They generally occur on much dryer sites and have little herbaceous diversity and more lichen species than moss species (Figure 4.2-7). No interior sites had the rich seepage sites that were relatively common on coastal occurrences.

Woodland in general contained a large portion of primary forest that has either never been logged, or only a small percentage was logged. Due to the generally shallow, poor soils and exposed locations, trees are small and often stunted, and although they are likely quite old, they cannot be classified as old forest.



FIGURE 4.2-6. COASTAL MIXED WOODLAND ON WEST REDONDA ISLAND.

FIGURE 4.2-7. INTERIOR CONIFER WOODLAND ON READ ISLAND.

Riparian (RI)

The Riparian class includes ecosystems that are associated with and influenced by freshwater such as along rivers, streams, creeks, and fringes around lakes. These ecosystems are influenced by factors such as erosion, sedimentation, flooding and/or subterranean irrigation due to proximity to the water body. This class includes all structural stages, i.e., structural stages 1 through 7. These ecosystem types often occurs as a fringe or gully due to generally smaller stream systems. They often include salmonberry, red elder berry, devils club, red alder, red cedar, and skunk cabbage. Seven subclasses are recognized:

 fl – low bench floodplain: flooded at least every other year for moderate periods of growing season; plant species adapted to extended flooding and abrasion, low or tall shrubs most common.

- fm medium bench floodplain: flooded every 1-6 years for short periods (10-25 days); deciduous or mixed forest dominated by species tolerant of flooding and periodic sedimentation.
- fh high bench floodplain: only periodically and briefly inundated by high waters, but lengthy subsurface flow in the rooting zone; typically conifer-dominated floodplains of larger coastal rivers.
- **ff** fringe: narrow linear communities along open water bodies (rivers, lakes and ponds) where there is no floodplain, irregular flooding but generally more regular subsurface flooding of rooting zone.
- **gu** gully riparian: watercourse is within a steep sided V-shaped gully or ravine; generally only minimal area of flooding but gully is important due to proximity to water and sensitive due to steeper slopes.
- **ca** canyon: watercourse is within a steep sided U-shaped canyon; generally only minimal area of flooding but canyon is important due to proximity to water, steep valley walls, and somewhat unique microclimate of canyon.
- **ri** river: river and associated gravel bars, if wide enough to be mapped.

Low, medium and high bench floodplains were infrequent in the study area, and never extensive (Figure 4.2-8 and 4.2-9). The typically occurred near the mouth of larger creeks and were normally captured in the RI:ff subclass. Floodplains were generally young to mature in age, and predominantly second growth with a significant history of logging. All site series that were identified in floodplain ecosystem are ecosystems-at-risk.

The RI:ff subclass encompassed a wide range of ecosystem types and structural stages (Figure 4.2-10). As it was created via buffering watercourse and water features from the provincial Fresh Water Atlas, it is more of a reflection of potential riparian areas, rather than mapping of vegetation communities that are adapted to or dependent on the adjacent watercourse. Fluvial fringes ranged from small floodplain forests, to mesic to wet forested areas adjacent to watercourses, ponds and lakes, to dry, rocky slopes adjacent to larger waterbodies, or more often, combinations of all three.

Gullies and canyons were found infrequently in the study area, with only a single observation of a canyon that was large enough to be mapped (Figure 4.2-11). The River subclass was used extensively, but it was applied to any moving linear watercourse, from small streams to large creeks. Large rivers, especially those that would develop prominent gravel bars, do not occur in the study area.

FIGURE 4.2-8. LOW BENCH FLOODPLAIN ON READ ISLAND.

FIGURE 4.2-9. MEDIUM BENCH FLOODPLAIN ON READ ISLAND.

FIGURE 4.2-10. FLUVIAL FRINGE ON WEST REDONDA ISLAND.

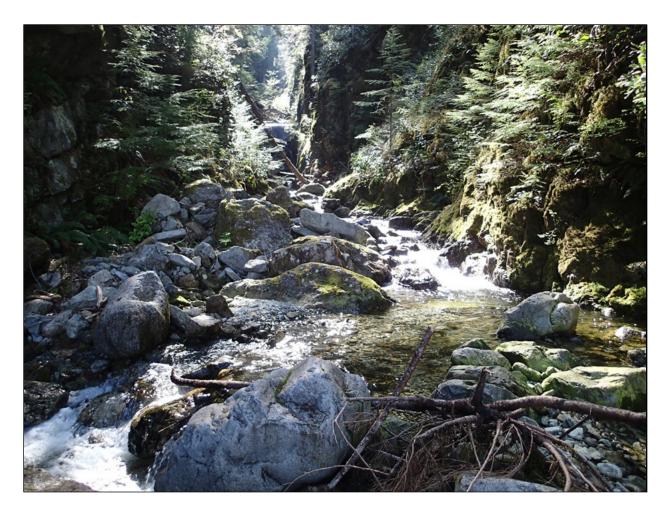


FIGURE 4.2-11. CANYON ON WEST REDONDA ISLAND.

Wetland (WN)

Wetland ecosystems are found where soils are saturated by water for enough time that the excess water and resulting low oxygen levels influence the vegetation and soil. The water influence is generally seasonal or year-round and occurs either at or above the soil surface or within the root zone of plants. Wetlands are usually found in areas of flat or undulating terrain. They encompass a range of plant communities that includes western red cedar/skunk cabbage swamps, cattail marshes, sweet gale fens, and peat-moss dominated bogs. Estuarine vegetation is in a separate Class for this SEI to emphasize the different flooding frequency (mostly diurnal) and water chemistry (brackish). Therefore, the wetland class is for freshwater wetlands only. Five subclasses are recognized:

• **bg** – bog: acidic, nutrient-poor wetlands that characteristically support peat-mosses and ericaceous shrubs such as Labrador tea and bog-rosemary. Being generally isolated from

mineral rich groundwater or surface water, their primary source of water and nutrients is from rainfall.

- fn fen: underlain by sedge or brown moss peat, fens are closely related to bogs. In addition to rainfall, fens receive mineral and nutrient-enriched water from upslope drainage or groundwater. Thus a broader range of plants, including shrubs and small trees, is able to grow.
- ms marsh: characterized by permanent or seasonal flooding by nutrient-rich waters. May include some areas of diurnal flooding of fresh water above the normal high hightide, due to high river water levels. Examples include freshwater marshes that are dominated by rushes, sedges or grasses.
- sp swamp: wooded wetlands dominated by 25% or more cover of flood-tolerant trees or shrubs. Characterized by periodic flooding and nearly permanent sub-surface waterflow through mixtures of mineral and organic materials, swamps are high in nutrient, mineral and oxygen content.
- **sw** shallow water: wetlands characterized by water less than 2 m in depth in midsummer; transition between deep water bodies and other wetland ecosystems (i.e. bogs, swamps, fens, etc.); often with vegetation rooted below the water surface.

Wetlands represented the majority of the intact and fully functioning ecosystems within the DEIM study area. All five SEI subclasses are well represented and occur on most islands. In general, the bogs and fens had the least amount of disturbance, while many swamps were historically logged and continue to be logged. Marshes occurred in a variety of states, ranging from pristine, to heavily modified by historic draining and farming, to wetlands that had little obvious physical disturbance, but were dominated by introduced species such as reed canarygrass. Shallow water wetlands were generally found to be intact and have little human disturbance.

Bog wetland typically occurred as either a easily classifiable Wb50 (blue-listed Labrador tea – bog laurel – peat-moss) or various forms of an unclassifiable bog association that contained similar species to the WB50, but also included species such as stunted shorepine, western hemlock, or salal. Bogs in general were in excellent condition, but often occurred in wetland complexes with the outer forested areas showing signs of historic logging. Figure 4.2-12 shows an example of an intact bog complex on Quadra Island.

FIGURE 4.2-12. BOG WETLAND QUADRA ISLAND.

Fen wetlands occurred predominately as the Wf52 association (sweet gale – Sitka sedge), which is a redlisted ecosystem in the CWHxm2, but not considered to be at-risk in the CWHdm where it was also identified on multiple occasions. This wetland type often occurred in large extents, and was typically complexed with marsh wetlands in the wetter interior and forested swamp fringes. Figure 4.2-13 presents one of the largest occurrences of the sweet gale – Sitka sedge association on Maurelle Island. Several small, unclassified fens that were dominated by sedges were also identified in the study area (Figure 4.2-14).

FIGURE 4.2-13. SWEET GALE FEN WETLAND ON MAURELLE ISLAND.

FIGURE 4.2-14. UNCLASSIFIED FEN WETLAND ON QUADRA ISLAND.

Marsh wetlands were common on all islands in the study area, but rarely extensive, and typically occurred as a small component (located in the wet interiors) of larger complexes. Marshes also often occurred as small to large fringes around ponds and lakes. Four marsh associations were identified, along with numerous types that could not be classified due to disturbance or modifications:

- Wm01 beaked sedge water sedge
- Wm05 cattail
- Wm06 great bulrush (Figure 4.2-15)
- Wm50 Sitka sedge hemlock-parsley (Figure 4.2-16)

FIGURE 4.2-15. BULRUSH MARSH WETLAND (RIGHT SIDE OF PHOTO) ON QUADRA ISLAND.

FIGURE 4.2-16. MARSH WETLAND ON QUADRA ISLAND.

Swamps were the most common wetland type found in the study area, and also the wetland type that was the most often disturbed. Five swamp associations were identified, along with multiple unclassified types that were highly modified or disturbed:

- Ws50 pink spirea Sitka sedge
- Ws52 Red alder Skunk cabbage
- Ws53 / CWHxm2 12 (blue –listed) Western redcedar Sword fern Skunk cabbage
- Ws54 (blue -listed) Western redcedar Western hemlock Skunk cabbage
- CWHxm2 15 (blue –listed) Western redcedar Slough sedge
- CWHxm1/CWHxm2/CWHdm 00 unclassified swamps

In general, the Ws50 swamps were undisturbed, while the treed swamps were disturbed more often than not. Figure 4.2-17 shows the most common type of swamp found in the study area, a blue-listed

Ws53. While this is a listed ecosystem, many of the Ws53 that were sampled were in too poor of shape to be considered a viable ecosystem-at-risk.

FIGURE 4.2-17. SWAMP WETLAND ON QUADRA ISLAND.

Shallow water wetlands were common, but almost always occurred as small portions of wetland complexes, mainly along the shallow margins of ponds Figure 4.2-18). Direct physical disturbance of theses wetlands were uncommon, however beaver modifications were common. Shallow water wetlands are not generally classified to specific associations, but rather lumped into a single ecosystem type. Vegetation and site conditions varied significantly, with yellow pond-lily and numerous species of pondweed or water shield also a common occurrence, along with a variety of other aquatic or emergent species.

FIGURE 4.2-18. SHALLOW WATER WETLAND ON QUADRA ISLAND.

Herbaceous (HB)

The herbaceous class comprises non-forested ecosystems (i.e., less than 10% tree cover) associated with coarse textured, shallow soils intermixed with bedrock outcrops. Natural disturbances (wind or wave action) are common. This class includes a variety of natural ecosystems such as large, bedrock-controlled openings within forested areas, coastal headlands, shorelines vegetated with grasses and herbs, sometimes low shrubs, and moss and lichen communities on rock outcrops. In the DIEM study area this class most commonly occurs as mossy rock outcrops within woodland ecosystems. It also occurs frequently along the islands typically rocky shoreline. Four subclasses are recognized:

hb – herbaceous: central concept of the category; non-forested, less than 10% tree cover, generally shallow soils, often with exposed bedrock; predominantly a mix of grasses and forbs, but also lichens and mosses.

- cs coastal herbaceous: criteria as for 'hb' but influenced by proximity to ocean; windswept shoreline and slopes; > 20% vegetation of grasses, herbs, mosses and lichens.
- **vs** vegetated shoreline: low-lying rocky shoreline, soil pockets in rock cracks and crevices; salt-tolerant vegetation, generally with < 20% vegetation cover.
- sh shrub component: > 20 % of total vegetation cover is shrub cover, with grasses and herbs.

The herbaceous subclass was a common occurrence throughout the DIEM study area (Figure 4.2-19). It was generally small in extent and complexed with woodlands, and less frequently other forested subclasses. Quite often, especially in areas mapped using TEM, the HB:hb was incorporated into other ecosystem types and not pulled out as a distinct unit.

FIGURE 4.2-19. HERBACEOUS ON QUADRA ISLAND.

Coastal herbaceous was also a common occurrence (Figure 4.2-20) that varied considerably in extent and floral diversity. It ranged from dry rocky areas that were similar in composition of the HB:hb, to wet, floristically diverse areas with rich soils. As with the Hb:hb, it typically occurred with the WD, and occasionally with other forested classes. Vegetated shoreline (Figure 4.2-21) was less common than the HB:cs, and restricted to low-lying rocky areas that were strongly influence by salt spray and occasional wave action.

The shrub component of the SV class was not observed during field surveys. There is a potential for this subclass to occur, but it is likely restricted to small areas that are not readily apparent.

FIGURE 4.2-20. COASTAL HERBACEOUS ON GORGES ISLAND (WALSH COVE PROVINCIAL PARK)

FIGURE 4.2-21. VEGETATED SHORELINE ON READ ISLAND.

Sparsely Vegetated (SV)

The sparsely vegetated class include areas of low vascular vegetation cover, generally 5 – 10 percent, but may be greater in some areas. They may have high cover of mosses, liverworts and lichens, but skeletal soils and moisture deficits limit the potential for substantial tree or shrub growth. The SV class occurs throughout the study area, from cliffs along the ocean, to high elevation rock outcrops and small talus slopes. Four subclasses are recognized:

- **cl** cliff: steep to very steep slopes, often with exposed bedrock; may include steepsided sand bluffs.
- ro rock outcrop: exposed bedrock, usually at the top of knolls or on portions of steeper slopes.
- ta talus: generally steep slopes comprised of rubbly blocks of rock.

• **st** – spit: finger-like extension of beach, comprised of sand or gravel deposited by longshore drifting; low to moderate cover of salt-tolerant grasses and herbs.

Cliffs were found through the study area, and ranged from small rock exposures near the ocean, to rock faces several hundred metres in height, such as Figure 4.2-22 on West Redonda Island. Vegetation on cliff ecosystems is sparse and generally restricted to small ledges and cliffs, yet large trees shrubs often occur. Rock outcrops are district ecological units, but they typically occur complexed with woodland and/or herbaceous classes. They are sparsely to non-vegetated and limited to low cover of mosses and lichens. Talus slopes were observed in the upper elevations of East Redonda and Sonora Islands, but the distance and access difficult precluded confirmation. A distinct spit ecosystem was not observed during the field surveys.

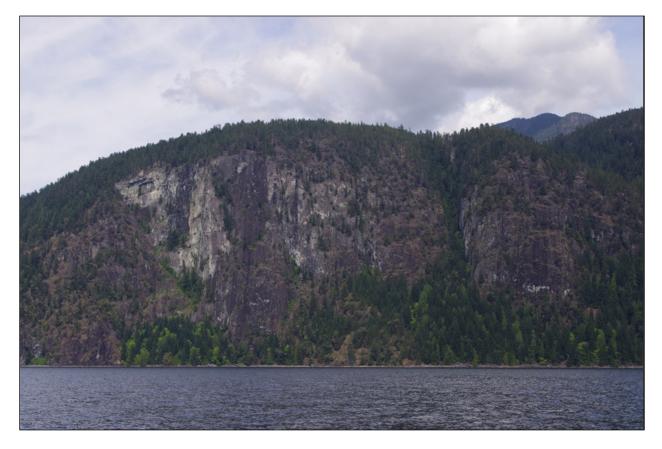


FIGURE 4.2-22. CLIFF ON WEST REDONDA ISLAND.

Estuarine (ES)

Estuarine ecosystems are found at the confluence of rivers with the sea where they are influenced by occasional or diurnal tidal inundation and brackish water. The vegetation reflects the brackish water conditions to varying degrees, depending on the position in the estuary and the magnitude of freshwater outflow. Estuarine ecosystems are distinguished from intertidal ecosystems by the degree of freshwater input – intertidal ecosystems are influenced by saltwater tidal inundation with little to no freshwater input, except by rainfall runoff. Four subclasses are recognized:

- **sp** estuary swamp: treed or shrubby ecosystems in brackish lagoons, on channel and estuary edges with occasional tidal flooding and waterlogged, slightly saline soils.
- **md** estuary meadow: found in the high intertidal zone of estuaries where tidal flooding occurs less frequently than daily and is tempered by freshwater mixing. Species composition is relatively diverse, typically with a mix of graminoids and forbs.
- ms estuary marsh: intertidal ecosystem that is flooded and exposed during most tidal cycles; usually simple communities dominated by salt-tolerant emergent graminoids and succulents.
- **tf** estuary tidal flat: large flats of silts, sands or pebbles, flooded and exposed in most tidal cycles; macroalgae common.

No estuary swamps were identified during the field surveys. Estuary meadows (Figure 4.2-23) and marshes (Figure 4.2-24) were infrequent and small (often too small to appear on the SEI mapping). Several large tidal flats were observed, particularly an extensive on East Redonda (Figure 4.2-25).


```
FIGURE 4.2-23. ESTUARY MEADOW ON READ ISLAND.
```


FIGURE 4.2-24. ESTUARY MARSH ON WEST REDONDA ISLAND.

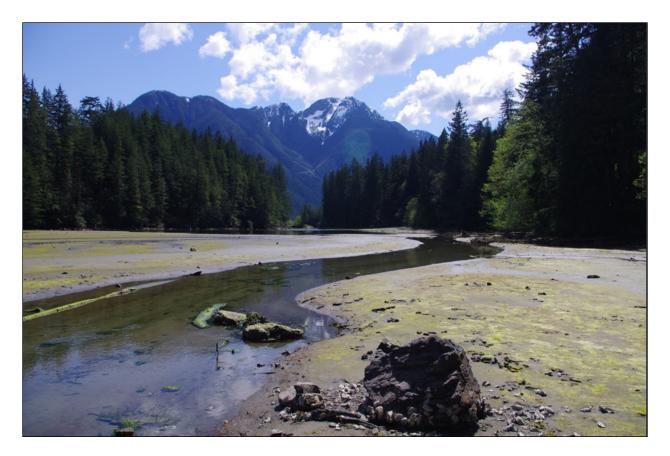


FIGURE 4.2-25. ESTUARY TIDAL FLATS ON EAST REDONDA ISLAND.

Intertidal & Shallow sub-tidal (IT)

Mudflats, beaches and rocky shorelines influenced by diurnal tidal cycles with little to no freshwater input (primarily through rainfall runoff). The intertidal ecosystems link the marine and terrestrial environments. Three subclasses are recognized:

- **mf** mudflats
- **bs** beaches and shorelines
- el intertidal & shallow subtidal eelgrass beds

Both mudflats and beaches and shorelines (Figure 4.2-26) are typically un-vegetated or sparsely vegetated with a variety of salt tolerant species. Beaches and shorelines are relatively common in the study area, but generally restricted to small protected bays and inlets on an otherwise rock dominated shoreline. Mud flats are also uncommon, and generally devoid of vegetation.

FIGURE 4.2-26. ROCKY, SPARSELY VEGETATED BEACH ON STUART ISLAND.

Eelgrass beds were also uncommon and rarely extensive. Figure 4.2-27 shows the largest eelgrass bed found in the study area on Read Island.

FIGURE 4.2-27. INTERTIDAL EELGRASS ON READ ISLAND.

Lakes & Ponds (FW)

Freshwater ecosystems include bodies of water such as lakes and ponds that usually lack floating vegetation. Ponds of various sizes are quite common in the DIEM study area, while lakes occur less frequently. Two subclasses are recognized:

- **Ia** lake: naturally occurring, static body of open water greater than 2 m deep and generally greater than 50 ha, with little to no floating vegetation
- **pd** pond: naturally occurring, small body of open water, greater than 2 m deep and generally less than 50 ha, with little to no floating vegetation (Figure 4.2-28).

FIGURE 4.2-28. FRESHWATER POND AND HARDHACK SWAMP COMPLEX ON QUADRA ISLAND.

Other Important Ecosystems

Other Important Ecosystems are mapped to identify important elements of biodiversity or recruitment sites for ecosystems at risk or important wildlife habitat requiring recovery or restoration.

Young Forest (YF)

Forests generally >30 – 40 yrs old and < 80 yrs old. Young forests can be important habitat areas for many wildlife species and serve as primary connections between ecosystems in a highly fragmented landscape. These are also possible recruitment areas for mature and old forests. Three subclasses are recognized:

- **co** conifer dominated (> 75% coniferous species).
- **mx** mixed conifer and deciduous (<75% coniferous and < 75% broadleaf composition).

• **bd** – broadleaf dominated (>75% broad-leaved species).

All three subclasses were observed during the field studies, with YF:co (Figure 4.2-29 and 4.2-30) being one of the most common SEI subclasses observed. Young forests are generally second growth forests, although occasionally stands that may be third growth were observed. Natural young forests were no observed.

FIGURE 4.2-29. YOUNG (2ND OR 3RD GROWTH) CONIFER FOREST ON QUADRA ISLAND.

FIGURE 4.2-30. YOUNG CONIFER FOREST ON WEST REDONDA ISLAND.

5.0 Recommendations

The following recommendations pertain to the DIEM SEI classification system and changes that could be made to the classes and subclasses:

- The OF:mx subclass could be removed from the SEI classification system, as it is unlikely to occur in the study area due to the lack of old bigleaf maple throughout most of the study area. Bigleaf maple is the only deciduous species that would be expected to form a mixed old growth stand in the study area.
- OF:vo should be retained in the classification system, but it is unlikely to ever be used. Although it may very well exist in small area, data do not exist to accurately determine if a given stand is over 400 years in age.

- The woodland class and subclasses are good and one of the easiest and most accurate classes to map, however as mentioned in the section, the woodland that occurs in the south and near the ocean is significantly different that the one that occurs in the north and at higher elevations.
 Splitting it into a coastal and interior class may be useful, however the existing mapping and imagery are likely not sufficient to do it at this time.
- RI:ff is problematic, as there is no consistent buffer size that can be used on the Freshwater Atlas features that accurately depicts active riparian areas. It is a useful subclass to retain in the mapping, but the definition could be altered to remove the irregular flooding and subsurface flooding of the rooting zone, and make it a more generalized riparian zone definition.
- RI:gu and RI:ca could be combined into a single subclass. They both have similar ecological
 functions and the data required to accurately differentiate a steep cully from a rock canyon is
 not available. It would likely be more accurate to map them as a single subclass at this time. As
 well, canyons are likely small in size and length in the study area in general, as only one was
 observed during the field studies.
- RI:ri should be modified to represent small to moderate-sized creeks and streams. Rivers do not
 occur in the study area, and gravel bars are generally restricted to the mouth and/or estuary
 portions of the watercourses. The subclass should be kept in the SEI system, but the meaning of
 it adapted for the DIEM study area.
- SV:st was not observed during the field studies. Spits may occur (and do occur in the southern
 portion of the study area that were not surveyed for this project), but they are likely not of
 sufficient size to be mapped. The subclass could be retained in the SEI system for future use if
 needed.
- HB:sh was not observed during the study area, and it not likely to occur in a large enough area to be mapped and/or accurately separated from adjacent subclasses. This subclass could be removed from the SEI classification for DIEM.
- ES:sp were not observed during the field surveys. It may occur at the mouth of some of the larger creeks, but it is likely small in extent and very difficult to separate from the adjacent floodplain or riparian ecosystems. The subclass could be retained in the SEI system for future use if needed.
- HB:cs and HB:vs could be combined into a single subclass as there was not a significant difference between the two types. Also it is not certain that the two subclasses could be reliably separated by either modelling existing mapping or via airphoto interpretation.

• The Maturing Second Growth and Disturbed Ecosystems classes and subclasses should be removed from the DIEM SEI system at this time. While the subclasses would be useful, existing data and mapping are not sufficient to apply these classifications in any meaningful or comprehensive manner across the study area.

6.0 References

British Columbia Ministry of Environment. 2005. Sensitive Ecosystems Inventory: Sunshine Coast. Ministry of Environment. Victoria, BC. Retrieved from http://www.env.gov.bc.ca/sei/sunshine/methodology.html, 2012 .

British Columbia Ministry of Forests. 2014. Campbell River Forest District Biogeoclimatic Zones. URL: <u>http://www.for.gov.bc.ca/rco/research/eco/bec_web/dcr.htm Accessed November 20</u>, 2014.

British Columbia Ministry of Forests, Lands, and Natural Resource Operations. [2011]. BECdb: Biogeoclimatic Ecosystem Classification Codes and Names, Version 8, 2011. [MSAccess 2003 format]. Forest Analysis and Inventory Branch, Victoria, B.C. <u>http://www.for.gov.bc.ca/hre/becweb/resources/codes-standards/standards-becdb.html</u>

British Columbia Ministry of Forests and Range and British Columbia Ministry of Environment. 2010. Field manual for describing terrestrial ecosystems. 2nd ed. Forest Science Program, Victoria, B.C. Land Manag. Handb. No. 25.

Green, R.N., and K. Klinka. 1994, A Field Guide to Site Identification and Interpretation for the Vancouver Forest Region. Ministry of Forests, Research Program.

Iverson, K. and C. Cadrin. 2003. Sensitive Ecosystems Inventory: Central Okanagan, 2000 – 2001. Volume
1: Methodology, Ecological Descriptions, Results and Conservation Tools. Technical Report Series No.
399, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.

MacKenzie, W. and J. Moran. 2004. Wetlands of British Columbia; A guide to identification. BC Ministry of Forests. Land Management Handbook No. 52.

McPhee, M., P. Ward, J. Kirkby, L. Wolfe, N. Page, K. Dunster, N.K. Dawe and I. Nykwist. 2000. Sensitive Ecosystems Inventory: East Vancouver Island and Gulf Islands, 1993-1997. Volume 2: Conservation Manual. Technical Report Series No. 345, Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.

RISC. 2006. Standard for Mapping Ecosystems at Risk version 1.0. Ministry of Environment, Resources Information Standards Committee. Victoria, B.C.

7.0 Appendices

7.1 Appendix 1. Raw Sample Plot Data

	108.001 = 101										-						
Plot #	Island	Project ID	Plot Type	Date	Surv.	Easting	Northing	BGC	SS	Status	SEI	SMR	SNR	Ele vation (m)	Slope (%)	Aspect	Mesoslope
DC007	Cortes	DIEM	G	4/28/2013	RD	360166	5554331	CWHxm1	01	Red	MF:co	4	с	124	20	312	Lower Slope
ER002	East Reonda	DIEM	G	5/6/2014	RD, CE	376383	5571535	CWHdm	05	Blue	MF:co	4 (5)	D-		5	30	Toe
ER001	East Reonda	DIEM	G	5/6/2014	RD, CE	376477	5571525	CWHdm	Ws52		WN:sp	7	D		0	0	Depression
WR005	Gorges Island	DIEM	G	5/7/2014	RD, CE	371762	5569947	CWHdm	00		HB:hb	1	A	3	10	180	Mid Slope
DC025	Maurelle	DIEM	G	5/1/2013	RD	343989	5571605	CWHxm2	02	Red	WD:co	1	A	131	60	240	Crest
MI101	Maurelle	DIEM	G	5/20/2014	RD	346520	5569832	CWHxm2	03	Blue	WD:co	1	A	183	80	200	Upper Slope
DC024	Maurelle	DIEM	G	5/1/2013	RD	344089	5570965	CWHxm2	05	Blue	MF:co	4 (5)	D	84	7	300	Mid Slope
DC026	Maurelle	DIEM	G	5/1/2013	RD	344148	5572673	CWHxm2	05		YF:co	5	D	137	5	280	Level
MI002	Maurelle	DIEM	G	5/16/2014	RD, CE	349250	5573953	CWHxm2	05		YF:co	4 (5)	D	77	0	0	Level
MI102	Maurelle	DIEM	G	5/20/2014	RD, CE	346660	5569449	CWHxm2	05	Blue	MF:co	4+	D	117	0	0	Level
MI003	Maurelle	DIEM	G	5/16/2014	RD	349281	5573939	CWHxm2	08	Red	RI:fh	8	D	83	0	0	Level
MI001	Maurelle	DIEM	G	5/16/2014	RD, CE	348783	5572739	CWHxm2	12	Blue	WN:sp	8	D	87	0	0	Level
MI103	Maurelle	DIEM	F	5/20/2014	RD, CE	346763	5568783	CWHxm2	12	Blue	WN:sp	7	D	93	0	0	Level
MI100	Maurelle	DIEM	G	5/20/2014	RD	346779	5569790	CWHxm2	Wf52	Red	WN:fn	8	D	68	0	0	Level
DC023	Octopus Islands	DIEM	G	5/1/2013	RD	341416	5571099	CWHxm2	00		HB:cs	4+	C+	3	0	999	Level
Penn Island 01	Penn	DIEM	G	5/10/2014	RD, CE	355459	5562547	CWHxm1	01		YF:co	4 (3)	C (B)	23	12	50	Mid Slope
DC001	Quadra	DIEM	G	4/27/2013	RD	338833	5553842	CWHxm1	00		WN:sw	8	с		0	999	Depression
DC008	Quadra	DIEM	F	4/29/2013	RD	340227	5552060	CWHxm1	00		HB:hb	0	В	176	54	244	Upper Slope
DC009	Quadra	DIEM	G	4/29/2013	RD	340318	5552013	CWHxm1	03		YF:co	1	C-	191	14	38	Upper Slope
DC002	Quadra	DIEM	G	4/27/2013	RD	338778	5554228	CWHxm1	Ws54		WN:sp	7	D+	99	0	999	Depression
Q1007	Quadra	DIEM	G	5/17/2014	RD	338453	5566569	CWHxm2	00		WN:sw	8	B (A)	96	0	0	Depression
QI011	Quadra	DIEM	G	5/19/2014	RD	341976	5560735	CWHxm2	00		HB:hb	0	А	37	75	160	Upper Slope

QI019	Quadra																
	Quaura	DIEM	G	5/24/2014	RD, CE	339793	5571715	CWHxm2	00		WN:sp	8	С	55	0	0	Depression
DC006	Quadra	DIEM	G	4/28/2013	RD, LK	339918	5559895	CWHxm2	01		YF:co	4	С	108	2	160	Lower Slope
Q1004	Quadra	DIEM	G	5/17/2014	RD	338922	558975	CWHxm2	01		YF:co	4	С	176	8	60	Mid Slope
Q1008b	Quadra	DIEM	F	5/17/2014	RD	337182	5566904	CWHxm2	01		YF:co	4	С	115	18	220	Mid Slope
Ql012	Quadra	DIEM	G	5/19/2014	RD	342065	5560758	CWHxm2	01	Red	MF:co	4 (3)	С	38	35	172	Mid Slope
Ql019b	Quadra	DIEM	G	5/21/2014	RD	331936	5572926	CWHxm2	01		YF:co	4	С	14	40	310	Upper Slope
Q1026	Quadra	DIEM	G	5/24/2014	RD, CE	338598	5572121	CWHxm2	01	Red	MF:co	4	С	194	45	360	Upper Slope
DC027	Quadra	DIEM	G	5/2/2013	RD	338610	5556810	CWHxm2	03		YF:co	2	В	133	25	118	Upper Slope
Ql014	Quadra	DIEM	G	5/19/2014	RD	342629	5557506	CWHxm2	03	Blue	WD:co	1	A	114	25	150	Crest
Q1022	Quadra	DIEM	G	5/24/2014	RD, CE	338837	5572772	CWHxm2	03	Blue	OF:co	1	С	64	10	200	Crest
QI018	Quadra	DIEM	G	5/19/2014	RD	341575	5558824	CWHxm2	05	Blue	MF:co	4 (5)	D	100	15	275	Mid Slope
Q1028	Quadra	DIEM	G	5/24/2014	RD, CE	339972	5571294	CWHxm2	05	Blue	MF:co	4	D	57	0	0	Level
QI010	Quadra	DIEM	F	5/17/2014	RD	338426	5562251	CWHxm2	06	Blue	MF:co	5	С	113	0	0	Level
QI015	Quadra	DIEM	G	5/19/2014	RD	342036	5557789	CWHxm2	12	Blue	WN:sp	8	D	52	0	0	Level
QI017	Quadra	DIEM	G	5/19/2014	RD	341508	5558800	CWHxm2	12	Blue	WN:sp	8	D	86	0	0	Level
Q1025	Quadra	DIEM	G	5/24/2014	RD, CE	338588	5573374	CWHxm2	12	Blue	WN:sp	7	D	61	0	0	Level
Q1002	Quadra	DIEM	G	5/17/2014	RD	341956	5559507	CWHxm2	12/ Ws53	Blue	WN:sp	8	D	40	0	0	Level
Q1003	Quadra	DIEM	G	5/17/2014	RD	339029	5558979	CWHxm2	12/ Ws53	Blue	WN:sp	8 (7)	D	177	0	0	Level
Q1009	Quadra	DIEM	F	5/17/2014	RD	338380	5562121	CWHxm2	13	Red	RI:fm	7	D	101	0	0	Level
DC004	Quadra	DIEM	G	4/28/2013	RD, EF, LK	344334	5561817	CWHxm2	15	Blue	WN:sp	7	D+	144	0	999	Depression
Q1008	Quadra	DIEM	F	5/17/2014	RD	335123	5566076	CWHxm2	Wb50	Blue	WN:bg	8	А	176	0	0	Depression
QI021	Quadra	DIEM	G	5/24/2014	RD, CE	338981	5572597	CWHxm2	Wb50	Blue	WN:bg	8	A	65	0	0	Depression
Q1024	Quadra	DIEM	G	5/24/2014	RD, CE	338572	5573197	CWHxm2	Wb50	Blue	WN:bg	8 (7)	A	52	0	0	Level

Duranu Eco										DCC. J.	2011						
Q1005	Quadra	DIEM	G	5/17/2014	RD	339215	5558781	CWHxm2	Wf52	Red	WN:fn	8	С	152	0	0	Depression
Q1020	Quadra	DIEM	G	5/24/2014	RD, CE	338957	5572609	CWHxm2	Wf52	Red	WN:fn	8	В	62	0	0	Depression
Q1023	Quadra	DIEM	G	5/24/2014	RD, CE	338589	5573108	CWHxm2	Wf52	Red	WN:fn	8	D	43	0	0	Level
QI027	Quadra	DIEM	G	5/24/2014	RD, CE	339325	5571895	CWHxm2	Wf52	Red	WN:fn	8	С	56	0	0	Level
Q1006	Quadra	DIEM	G	5/17/2014	RD	338917	5563040	CWHxm2	Wf53	Red	WN:fn	8	D {C}	92	0	0	Depression
DC003	Quadra	DIEM	G	4/27/2013	RD	336676	5557067	CWHxm2	Wm01		WN:ms	8 (7)	D+	157	0	999	Depression
QI016	Quadra	DIEM	G	5/19/2014	RD	341477	5558763	CWHxm2	Wm50	Blue	WN:ms	7	С	89	0	0	Level
DC005	Quadra	DIEM	G	4/28/2013	RD	343531	5560529	CWHxm2	Ws50		WN:sp	8	C+	4	0	999	Depression
Q1001	Quadra	DIEM	G	5/17/2014	RD	341989	5559546	CWHxm2	Ws50		WN:sp	8	D	39	0	0	Level
QI013	Quadra	DIEM	G	5/19/2014	RD	342266	5560452	CWHxm2	Ws50		WN:sp	8	D	34	0	0	Level
Raza 003	Raza	DIEM	G	5/14/2014	RD, CE	355209	5573854	CWHdm	01		MF:co	4	С	41	32	200	Mid Slope
Raza 002	Raza	DIEM	G	5/14/2014	RD, CE	356871	5571267	CWHdm	02	Red	WD:mx	0	А	12	75	172	Upper Slope
Raza 01	Raza	DIEM	G	5/14/2014	RD, CE	359247	5573164	CWHdm	03	Blue	MF:co	1	В	41	80	115	Mid Slope
Read 22	Read	DIEM	F	5/13/2014	RD, CE	347610	5555124	CWHxm1	00		HB:hb	0	А	6	0	0	Crest
Read 21	Read	DIEM	F	5/13/2104	RD, CE	347729	5555166	CWHxm1	02	Red	WD:mx	0	А	36	20	120	Mid Slope
Read 08	Read	DIEM	G	5/11/2014	RD, CE	353063	5564419	CWHxm2	12		WN:sp	7	D	83	0	0	Level
DC013	Read	DIEM	G	4/30/2013	RD	350199	5563579	CWHxm2	00		ES:md	6	E(F)	3	0	999	Level
DC020	Read	DIEM	G	4/30/2013	RD	350968	5566033	CWHxm2	00		WN:bg	Wet	В	21	0	999	Depression
Read 15	Read	DIEM	G	5/12/2014	RD, CE	349968	5560433	CWHxm2	00		WN:sp	7	C (D)	13	0	0	Level
Read 16	Read	DIEM	G	5/12/2014	RD, CE	349803	5560700	CWHxm2	00		WN:sp	8	D	17	0	0	Level
DC017	Read	DIEM	G	4/30/2013	RD	350580	5562323	CWHxm2	01		YF:co	3	В		45	380	Lower Slope
Read 03	Read	DIEM	G	5/10/2014	RD, CE	352706	5565456	CWHxm2	01		YF:mx	5 (4)	С	63	0	0	Level
Read 06	Read	DIEM	G	5/11/2014	RD, CE	352633	5564629	CWHxm2	01	Red	MF:co	3	B [C]	67	25	273	Тое

DC30 Read DEM G 48210 RD 85314 558399 CWHHZ 0 Rd Rd <th>Buluna Eco</th> <th>logicul Etu.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Dec. 9.</th> <th>2014</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Buluna Eco	logicul Etu.									Dec. 9.	2014						
Read 12 Read DEM G S112014 PRD, C S557574 CWHenz A M	DC010	Read	DIEM	G	4/29/2103	RD	352514	5563099	CWHxm2	02	Red	WD:co	2	В	97	60	999	Crest
DC0100 Read DIEM G 4/29/2013 RDD 332/68 558300 CW1m2 6.3 DEM 3.3 C 8.4 2.0 1.40 Upper Stress Read 07 Read DIEM G S111201 RD.CE 35231 5564432 CW1m2 0.3 VF.co 2.0 B 6.0 1.0 Upper Creat Read 07 Read DIEM G S111201 RD.CE 35297 556442 CW1m2 0.3 Ble OEC 2.0 B 0.0 0.0 1.00 Upper Creat Read 10 DIEM F S11201 RD.CE 35297 555740 CW1m2 0.0 Ble OEC 1.0 B 2.0 1.0 0.0 1.00 Upper Stress Read 10 Read DIEM G S11201 RD.CE 35287 555740 CW1m2 0.0 Ble ACO 2.0 L 1.0 L .0 Md3rstres <tr< td=""><td>DC016</td><td>Read</td><td>DIEM</td><td>G</td><td>4/30/2013</td><td>RD</td><td>350733</td><td>5562318</td><td>CWHxm2</td><td>02</td><td>Red</td><td>WD:co</td><td>1</td><td>B (A)</td><td>23</td><td>50</td><td>180</td><td>Crest</td></tr<>	DC016	Read	DIEM	G	4/30/2013	RD	350733	5562318	CWHxm2	02	Red	WD:co	1	B (A)	23	50	180	Crest
Read 0/ Read 0/ DEM G S11204 RO. CE S233 S56445 CWHard S3 C FE. C <thc< th=""> C <thc< th=""> C</thc<></thc<>	Read 12	Read	DIEM	G	5/11/2014	RD, CE	352526	5567374	CWHxm2	02	Red	WD:co	0	1	401	90	188	Crest
Read 00 Read DEM G S11201 RD, CE 35585492 CMHan G0 Blue OF C C M	DC010b	Read	DIEM	G	4/29/2013	RD	352466	5563070	CWHxm2	03		DE:sh	3	С	84	20	140	Upper Slope
Image: Constraint of the second se	Read 07	Read	DIEM	G	5/11/2014	RD, CE	352331	5564452	CWHxm2	03		YF:co	2	В	60			Upper - Crest
Read 11 Read DIEM F S11/2014 RD, CE 35267 S567044 CWH m2 03 Blue OF-co 1 B 293 80 140 Upper Slope Read 13 Read DIEM G 511/2014 RD, CE 35267 S56704 CWH m2 03 Blue OF-co 1 B 293 80 140 Upper Slope Read 01 Read DIEM G 511/2014 RD, CE 352675 S567140 CWH m2 03 Blue OF-co 2 (3) C 432 10 60 Md Slope Read 19 Read DIEM G 511/2014 RD, CE 34259 5561129 CWH m2 04 Blue WD co 2 (3) D 53 2.0 Upper Slope DC012 Read DIEM G 5112014 RD, CE 35670 CWH m2 05 Blue MF-co 4 (5) D 4 D A 0<	Read 09	Read	DIEM	G	5/11/2014	RD, CE	352997	5565492	CWHxm2	03	Blue	OF:co	2	В	70	90	240	Upper - Crest
Image: Constraint of the	Read 10	Read	DIEM	F	5/11/2014	RD, CE	351978	5566436	CWHxm2	03	Blue	OF:co	2	с	174	40	120	Upper Slope
Concern Concern <t< td=""><td>Read 11</td><td>Read</td><td>DIEM</td><td>F</td><td>5/11/2014</td><td>RD, CE</td><td>352667</td><td>5567044</td><td>CWHxm2</td><td>03</td><td>Blue</td><td>OF:co</td><td>1</td><td>В</td><td>293</td><td>80</td><td>140</td><td>Upper Slope</td></t<>	Read 11	Read	DIEM	F	5/11/2014	RD, CE	352667	5567044	CWHxm2	03	Blue	OF:co	1	В	293	80	140	Upper Slope
Let Let <td>Read 13</td> <td>Read</td> <td>DIEM</td> <td>G</td> <td>5/11/2014</td> <td>RD, CE</td> <td>352872</td> <td>5567761</td> <td>CWHxm2</td> <td>03</td> <td>Blue</td> <td>OF:co</td> <td>2 (3)</td> <td>С</td> <td>432</td> <td>10</td> <td>60</td> <td>Mid Slope</td>	Read 13	Read	DIEM	G	5/11/2014	RD, CE	352872	5567761	CWHxm2	03	Blue	OF:co	2 (3)	С	432	10	60	Mid Slope
And the set of the se	Read 04	Read	DIEM	G	5/10/2014	RD, CE	352639	5565460	CWHxm2	04	Blue	MF:co	2 (3)	С	51	55	230	Upper Slope
Control Control <t< td=""><td>Read 19</td><td>Read</td><td>DIEM</td><td>G</td><td>5/12/2014</td><td>RD, CE</td><td>349259</td><td>5561129</td><td>CWHxm2</td><td>04</td><td>Blue</td><td>WD:co</td><td>2</td><td>D</td><td>53</td><td></td><td></td><td>Crest</td></t<>	Read 19	Read	DIEM	G	5/12/2014	RD, CE	349259	5561129	CWHxm2	04	Blue	WD:co	2	D	53			Crest
- $ -$ <td>DC012</td> <td>Read</td> <td>DIEM</td> <td>G</td> <td>4/29/2013</td> <td>RD</td> <td>352525</td> <td>5564647</td> <td>CWHxm2</td> <td>05</td> <td>Blue</td> <td>OF:co</td> <td>4 (5)</td> <td>D©</td> <td>70</td> <td>10</td> <td>214</td> <td>Mid Slope</td>	DC012	Read	DIEM	G	4/29/2013	RD	352525	5564647	CWHxm2	05	Blue	OF:co	4 (5)	D©	70	10	214	Mid Slope
- $ -$ <td>Read 20</td> <td>Read</td> <td>DIEM</td> <td>G</td> <td>5/12/2014</td> <td>RD, CE</td> <td>350570</td> <td>5562419</td> <td>CWHxm2</td> <td>05</td> <td>Blue</td> <td>MF:co</td> <td>4</td> <td>C (D)</td> <td>47</td> <td>6</td> <td>80</td> <td>Lower Slope</td>	Read 20	Read	DIEM	G	5/12/2014	RD, CE	350570	5562419	CWHxm2	05	Blue	MF:co	4	C (D)	47	6	80	Lower Slope
Image: Constraint of the state of	Read 50	Read	DIEM	G	5/20/2014	RD, CE	351749	5570397	CWHxm2	05	Blue	MF:co	4	D	42	30	265	Lower Slope
C_{CCC} C_{CC} <	Read 02	Read	DIEM	G	5/10/2014	RD, CE	352869	5565562	CWHxm2	07		YF:mx	5	D+	36	0	0	Level
c_{coc} <	Read 17	Read	DIEM	G	5/12/2014	RD, CE	349282	5561211	CWHxm2	07	Blue	MF:co	5	D	45	3	90	Level
Image: Note of the state o	DC015	Read	DIEM	G	4/30/2013	RD	350389	5563698	CWHxm2	08	Red	RI:fh	5	D	13	0	999	Тое
DC021 Read DIEM G 4/30/2013 RD 351010 5565996 CWHxm2 12/ Ws54 Blue WN:sp 6 D 35 0 999 Level	Read 01	Read	DIEM	G	5/10/2014	RD, CE	353033	5565725	CWHxm2	12		WN:sp	6	D	48	0	0	Level
	Read 18	Read	DIEM	G	5/12/2014	RD, CE	349359	5561121	CWHxm2	12	Blue	WN:sp	7	D+	42	3	86	Level
DC014 Read DIEM G 4/30/2013 SL 350209 5563559 CWHxm2 Em 02 Red ES:ms 7 F 2 0 124 Level	DC021	Read	DIEM	G	4/30/2013	RD	351010	5565996	CWHxm2	12/ Ws54	Blue	WN:sp	6	D	35	0	999	Level
	DC014	Read	DIEM	G	4/30/2013	SL	350209	5563559	CWHxm2	Em02	Red	ES:ms	7	F	2	0	124	Level
DC018 Read DIEM G 4/30/2013 RD 350881 5565951 CWHxm2 Wb50 Blue WN:bg WW A 28 0 999 Level	DC018	Read	DIEM	G	4/30/2013	RD	350881	5565951	CWHxm2	Wb50	Blue	WN:bg	W	A	28	0	999	Level
Read 14 Read DIEM G 5/11/2014 RD, CE 352702 5568273 CWHxm2 Wb50 Blue WN:bg 8 A (B) 428 0 0 Depression	Read 14	Read	DIEM	G	5/11/2014	RD, CE	352702	5568273	CWHxm2	Wb50	Blue	WN:bg	8	A (B)	428	0	0	Depression

LODM Read DEM G 40003 RD 30004 506986 CMMm2 Win Win RD D <	Buluna Eco	iogical Eta.									Dec. 9.	2011						
Sonora // Sonora DEM G Sonora DEM G Sonora NN-by R A Sonora Dep Sonora Dep Sonora DEM G Sonora DEM G Sonora Sonora Sonora DEM G Sonora Sonora DEM G Sonora Sonora Sonora DEM G Sonora Sonor	DC019	Read	DIEM	G	4/30/2013	RD	350943	5565985	CWHxm2	Wm01		WN:ms	8	D	32	0	999	Depression
Senora 64 Senora 72 Senora 72 <t< td=""><td>DC011</td><td>Read</td><td>DIEM</td><td>G</td><td>4/29/2013</td><td>RD</td><td>352276</td><td>5563636</td><td>CWHxm2</td><td>Ws</td><td></td><td>WN:sp</td><td>6 (7)</td><td>D</td><td>112</td><td>0</td><td>999</td><td>Depression</td></t<>	DC011	Read	DIEM	G	4/29/2013	RD	352276	5563636	CWHxm2	Ws		WN:sp	6 (7)	D	112	0	999	Depression
Sonora 69 Sonora DIEM G Soza201 RD, CE 33880 S57780 CWHmm OI Blue OF Co 3 C 449 10 32 Lenei Sonora 69 Sonora DIEM G Soza201 RD, CE 33976 CWHmm 01 Blue OF Co 4 C 611 20 270 Md Siope Sonora 60 Sonora DIEM G Soz2014 RD, CE 33970 SST8106 CWHmm 02 Blue WDco 1 B 244 80 100 Upper Soz Sonora 70 Sonora DIEM G Soz2014 RD, CE 33976 CWHmm 02 Blue WDco 0 1 Boo 40 0 125 Crest 1 Soo 80 0 125 Crest 10 10 100 10 100 10 100 100 100 100 100 100 100 10	Sonora 74	Sonora	DIEM	G	5/23/2014	RD, CE	339270	5581136	CWHmm1	00		WN:bg	8	А	518	0	0	Depression
Sanora 72 Sanora DEM G Sazaria PRD, E Sassion 72 Sassion 72 Dem Dem Dem Dem Dem Com Dem Dem Com Sassion 72 Sanora 72 Sanora 72 Sanora 72 Sanora 72 Dem DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Sanora DEM G Sazaria RRD, CE Sassion 72 Sassion 72 Red Red Red Sassion 72 Sassion 72 <t< td=""><td>Sonora 64</td><td>Sonora</td><td>DIEM</td><td>G</td><td>5/22/2014</td><td>RD, CE</td><td>332983</td><td>5576153</td><td>CWHmm1</td><td>01</td><td></td><td>YF:co</td><td>4</td><td>С</td><td>303</td><td>0</td><td>0</td><td>Level</td></t<>	Sonora 64	Sonora	DIEM	G	5/22/2014	RD, CE	332983	5576153	CWHmm1	01		YF:co	4	С	303	0	0	Level
Sonora 63 Sonora DIEM G 5222014 RD, CE 333070 SST6166 CWHmm 02 Bue WDzo 1 B 264 80 140 Upper Supper Sup	Sonora 69	Sonora	DIEM	G	5/23/2014	RD, CE	338801	5579780	CWHmm1	01	Blue	OF:co	3	С	449	10	32	Level
Sonora 70 Sonora DIEM G Sonora Sonora DIEM F Sonora Sonora DIEM G	Sonora 73	Sonora	DIEM	G	5/23/2014	RD, CE	339782	5581079	CWHmm1	01	Blue	OF:co	4	С	611	20	270	Mid Slope
Image: Second 2 Second 2 Deem G C G C <thc< th=""> <thc< th=""></thc<></thc<>	Sonora 63	Sonora	DIEM	G	5/22/2014	RD, CE	333070	5576106	CWHmm1	02	Blue	WD:co	1	В	264	80	140	Upper Slope
Image: Second and a s	Sonora 70	Sonora	DIEM	G	5/23/2014	RD, CE	339062	5579670	CWHmm1	02	Blue	WN:co	0	1	500	80	125	Crest
Andread Andrea Andread Andread	Sonora 72	Sonora	DIEM	G	5/23/2014	RD, CE	339890	5580630	CWHmm1	06	Red	OF:co	5	C (D)	663	0	0	Level
Image: Constraint of the second of the se	Sonora 75	Sonora	DIEM	G	5/23/2014	RD, CE	339151	5581339	CWHmm1	06	Red	OF:co	5	С	524	20	240	Тое
Image: Constraint of the state of the s	Sonora 71	Sonora	DIEM	F	5/23/2014	RD, CE	339751	5579863	CWHmm1	07	Red	OF:co	5	D	566	10	200	Gully
Concernent Concerne Concerne Concernent<	Sonora 58	Sonora	DIEM	G	5/21/2014	RD, CE	343990	5577653	CWHxm2	00		WN:sp	8	D	39	0	0	Level
Image: Constraint of the state of the s	Sonora 60	Sonora	DIEM	F	5/22/2014	RD, CE	337995	5577850	CWHxm2	00		WN:bg	7	A	36	0	0	Depression
Image: Constraint of the state of the s	Sonora 61	Sonora	DIEM	G	5/22/2014	RD, CE	337957	5577799	CWHxm2	00		WN:sp	8	С	36	0	0	Depression
And the last of the las	Sonora 02	Sonora	DIEM	F	5/13/2014	RD, CE	334940	5579147	CWHxm2	01	Red	MF:co	4	С	29	8	200	Mid Slope
And the last of the las	Sonora 04	Sonora	DIEM	F	5/13/2014	RD, CE	334565	5583274	CWHxm2	01	Red	OF:co	4	С	56	28	109	Mid Slope
Sonora 57 Sonora DIEM G 5/21/2014 RD, CE 347538 5578131 CWHxm2 01 Red MF:co 4 C 423 50 80 Mid Slope Sonora 62 Sonora DIEM G 5/22/2014 RD, CE 333324 5576173 CWHxm2 01 Red MF:co 4 C 423 50 80 Mid Slope Sonora 62 Sonora DIEM G 5/22/2014 RD, CE 333324 5576173 CWHxm2 01 YF:co 2 C 240 65 100 Mid Slope	Sonora 53	Sonora	DIEM	G	5/21/2014	RD, CE	345256	5578572	CWHxm2	01	Red	MF:co	4	С	172	70	200	Mid Slope
Sonora 62 Sonora DIEM G 5/22/2014 RD, CE 333324 5576173 CWHxm2 01 YF:co 2 C 240 65 100 Mid Slope	Sonora 56	Sonora	DIEM	G	5/21/2014	RD, CE	346744	5578489	CWHxm2	01		YF:co	4+	С	454	5	30	Upper Slope
	Sonora 57	Sonora	DIEM	G	5/21/2014	RD, CE	347538	5578131	CWHxm2	01	Red	MF:co	4	С	423	50	80	Mid Slope
	Sonora 62	Sonora	DIEM	G	5/22/2014	RD, CE	333324	5576173	CWHxm2	01		YF:co	2	С	240	65	100	Mid Slope
DC022 Sonora DIEM G 5/1/2013 RD 341937 5574197 CWHxm2 02 Red WD:co 1 B 18 58 150 Upper Slope	DC022	Sonora	DIEM	G	5/1/2013	RD	341937	5574197	CWHxm2	02	Red	WD:co	1	В	18	58	150	Upper Slope
Sonora 06 Sonora DIEM G 5/16/2014 RD 342364 5574230 CWHxm2 02 Red WD:co 0 A 21 80 170 Mid Slope	Sonora 06	Sonora	DIEM	G	5/16/2014	RD	342364	5574230	CWHxm2	02	Red	WD:co	0	A	21	80	170	Mid Slope
Sonora 03 Sonora DIEM F 5/13/2014 RD, CE 334485 5583309 CWHxm2 03 Blue MF:co 2 C 105 0 0 Crest	Sonora 03	Sonora	DIEM	F	5/13/2014	RD, CE	334485	5583309	CWHxm2	03	Blue	MF:co	2	С	105	0	0	Crest

	logical Eta.									Dec. 9.							
Sonora 66	Sonora	DIEM	F	5/22/2014	RD, CE	330438	5574707	CWHxm2	03	Blue	MF:co	1	В	170	90	180	Mid Slope
Sonora 68	Sonora	DIEM	G	5/23/2014	RD, CE	338368	5579829	CWHxm2	03	Blue	MF:co	2	В	298	10	160	Mid Slope
Sonora 01	Sonora	DIEM	F	5/13/2104	RD, CE	332097	5581135	CWHxm2	05		YF:co	5	D	10	3	240	Lower Slope
Sonora 76	Sonora	DIEM	G	5/23/2014	RD, CE	336363	5579024	CWHxm2	05	Blue	MF:co	4	D	19	30	180	Lower Slope
Sonora 05	Sonora	DIEM	G	5/16/2014	RD, CE	339428	5588943	CWHxm2	06	Blue	MF:co	5	с	36	65	345	Lower Slope
Sonora 51	Sonora	DIEM	G	5/21/2014	RD, CE	345286	5578453	CWHxm2	07	Blue	OF:co	6	D (E)	140	3	0	Mid Slope
Sonora 54	Sonora	DIEM	G	5/21/2014	RD, CE	346112	5578433	CWHxm2	07	Blue	MF:co	6	D	293	3		Level
Sonora 50	Sonora	DIEM	G	5/21/2014	RD, CE	345648	5579234	CWHxm2	12	Blue	WN:sp	8	C+	244	0	0	Level
Sonora 65	Sonora	DIEM	G	5/22/2014	RD, CE	330567	5574099	CWHxm2	12	Blue	WN:sp	8	D	57	0	0	Level
Sonora 59	Sonora	DIEM	G	5/21/2014	RD, CE	344370	5579335	CWHxm2	12/ Ws54		WN:sp	8	C+	107	0	0	Level
Sonora 67	Sonora	DIEM	G	5/22/2014	RD, CE	336832	5576418	CWHxm2	13	Red	RI:fm	7	D	12	0	0	Level
Sonora 55	Sonora	DIEM	G	5/21/2014	RD, CE	346834	5578438	CWHxm2	Wb50	Blue	WN:bg	8	А	445	0	0	Depression
Sonora 52	Sonora	DIEM	G	5/21/2014	RD, CE	345202	5578501	CWHxm2	Wf52	Red	WN:fn	8	C+	130	0	0	Depression
SI001	Stuart	DIEM	G	5/15/2014	RD, CE	348671	5585452	CWHdm	00		WN:fn	8	C (B)	65	0	0	Level
SI005	Stuart	DIEM	G	5/15/2014	RD, CE	348882	5585807	CWHdm	00		WN:bg	8	A	44	0	0	Depression
SI007	Stuart	DIEM	G	5/15/2014	RD	348444	5584695	CWHdm	01		YF:co	3	С	87	70	250	Mid Slope
SI008	Stuart	DIEM	G	5/15/2014	RD	349006	5584429	CWHdm	01		MF:co	4	С	252	5	240	Level
SI009	Stuart	DIEM	G	5/15/2014	RD	348696	5584622	CWHdm	01	Blue	OF:co	4	С	197			Mid Slope
SI003	Stuart	DIEM	G	5/15/2014	RD, CE	349103	5585569	CWHdm	03	Blue	MF:co	2	В	137	70	270	Upper Slope
SI004	Stuart	DIEM	G	5/15/2014	RD, CE	349409	5586361	CWHdm	03	Blue	WN:co	1	A	17	30	105	Mid Slope
SI002	Stuart	DIEM	G	5/15/2014	RD, CE	348848	5585632	CWHdm	05	Blue	MF:co	4 (5)	D	73	75	260	Toe
SI006	Stuart	DIEM	G	5/15/2014	RD	348371	5584930	CWHdm	12	Blue	WN:sp	8	D	26	5	200	Level
WR007	West Redonda	DIEM	F	5/8/2014	RD, CE	369824	5561172	CWHdm	00		WN:bg	8	В	47	0	0	Depression

										Dec. 9.	2014						
WR009	West Redonda	DIEM	G	5/8/2014	RD, CE	369953	5560992	CWHdm	00		WN:sp	8	C (D)	50	0	0	Depression
WR018	West Redonda	DIEM	G	5/9/2104	RD, CE	367742	5555563	CWHdm	00		WN:sw	8	D	113	0	0	Gully
WR008	West Redonda	DIEM	G	5/8/2014	RD, CE	369892	5561185	CWHdm	01		YF:co	4	С	40	0	0	Level
WR021	West Redonda	DIEM	G	5/10/2014	RD, CE	361204	5563522	CWHdm	01	Blue	MF:co	4 (5)	C+	57	35	200	Lower Slope
WR011	West Redonda	DIEM	G	5/8/2014	RD, CE	368225	5562554	CWHdm	03	Blue	MF:co	2 (3)	С	60	40	20	Upper Slope
WR006	West Redonda	DIEM	G	5/7/2014	RD, CE	367276	5572375	CWHdm	05		YF:co	4 (5)	D	20	65	30	Lower Slope
WR022	West Redonda	DIEM	G	5/10/2014	RD, CE	361223	5563467	CWHdm	05	Blue	RI:ff	5 (4)	D	16	0	0	Level
WR010	West Redonda	DIEM	G	5/8/2014	RD, CE	369988	5560897	CWHdm	06	Red	RI:ff	5	С	25	0	0	Gully
WR100	West Redonda	DIEM	G	5/14/2014	RD, CE	363299	5570190	CWHdm	06		YF:co	5	C (D)	323	15	170	Lower Slope
WR003	West Redonda	DIEM	G	5/7/2014	RD	372185	5558155	CWHdm	07	Blue	MF:co	5	D	10	0	0	Toe
WR101	West Redonda	DIEM	G	5/14/2014	RD, CE	363624	5568647	CWHdm	12	Blue	WN:sp	8	D	181	0	0	Depression
WR004	West Redonda	DIEM	G	5/7/2014	RD	372370	5558087	CWHdm	Wf52		WN:fn	7	D		0	0	Level
WR102	West Redonda	DIEM	G	5/14/2014	RD, CE	363257	5569039	CWHdm	Wf52		WN:fn	8	D	189	0	0	Depression
WR002	West Redonda	DIEM	G	5/6/2014	RD, CE	369754	5553781	CWHxm1	00		WN:sp	7 (6)	D	109	0	0	Depression
WR017	West Redonda	DIEM	G	5/9/2104	RD, CE	367433	5555314	CWHxm1	00		WN:ms	8	D	79	0	0	Level
WR013	West Redonda	DIEM	G	5/8/2014	RD, CE	371073	5555345	CWHxm1	01		YF:co	3-4	C (B)	45	5	270	Mid Slope
WR020	West Redonda	DIEM	G	5/9/2104	RD	368431	5554155	CWHxm1	02	Red	WD:mx	1	А	18	0	0	Crest
WR001	West Redonda	DIEM	G	5/6/2014	RD, CE	369577	5552700	CWHxm1	02/00	Red	WD:mx	2	В	4	75	145	Lower Slope
WR019	West Redonda	DIEM	G	5/9/2104	RD, CE	367778	5555481	CWHxm1	03	Blue	MF:co	2 (3)	B [C]	82	45	220	Upper Slope
WR012	West Redonda	DIEM	G	5/8/2014	RD, CE	369144	5554950	CWHxm1	06	Blue	MF:co	4 (5)	C+	47	7	310	Lower Slope
WR015	West Redonda	DIEM	G	5/9/2104	RD, CE	367547	5555247	CWHxm1	06	Blue	MF:co	5 (4)	с	70	2	0	Toe
WR016	West Redonda	DIEM	G	5/9/2104	RD, CE	367601	5555358	CWHxm1	12 / Ws54	Blue	WN:sp	7	D	47	0	0	Level
WR014	West Redonda	DIEM	G	5/9/2104	RD, CE	367023	5555013	CWHxm1	Em03	Red	ES:ms	7	D (E)	0	0	0	Toe

Plot #	Mineral Soil Texture	Surface Shape	Floodplain	Exposure	Site Disturb.	Texture 1	Surf. Mat. 1	S. Exp. 1	Drainage - Mineral Soils	Humus - Organic Form	Humus Thickness	Ah	Ae	Soil Depth (cm)	R.Z.Coarse Frag. %
DC007	L	СС				sz	М	hj	w						20-35
ER002	SiL	ST			Harvest	sz	MG	bj	I	Mull	>5	17		>100	20
ER001		CV				h	0	bd	v	Humic				40+	0
WR005		ST		Wind / Salt spray / Water spray	N/A		R	j	x		0	0		0	50+
DC025	SL	CV				ZS	R	rs	x						35-70
MI101	SiL	CV		N/A	N/A	z	R	r	x	Mull	2	6		10-20	35+
DC024	L	ST				ZS		jb	м	Mor					<20
DC026	L	ST				ZS	С	bj	I						<20
MI002	L	ST		N/A	Harvest	sz	М	b	м	Mull	10	5		>40	<5
MI102	L	ST		N/A	Fire / Old harvest	sz	С	bt	w		2	6		>40	15
MI003	SiL	ST	Yes	N/A	Harvest	S	F ^A	р	I	Mull	5	3		>30	10
MI001		CC		N/A	Harvest	m	0	vp	v	Mesic				>40	0
MI103		ST			Harvest		0	bp	v	Humic	2			>50	0
MI100		ST		N/A	N/A		0	bp	v	Humic				>100	0
DC023	Si	ST			Salt Spray	z	М	x	м						35-70
Penn Island 01	LS	CV		Wind	Fire / Harvest / Soil dist	sz	М	x	w	Mull	2	3		>40	>15
DC001	Si	СС					М	d	v						<20
DC008	Si	CV				z	С	xrs	Р						35-70
DC009	SL	CV				sz	М	wj	w	Mor					20-35
DC002	Si	сс				ZS	F ^A	р	Р						<20
Q1007		ST				m	0	d	v	Mesic				>40	0

	iogical Eta.								DCC: 5. 20						
QI011	Si	CV		N/A	N/A		R	r	х	Mull	3	2		5	0
QI019		СС		N/A	Harvest		0	bd	v	Mesic				>60	0
DC006	Si	СС				ZS	м	bj	м						<20
Q1004	L	ST		N/A	Harvest	ZS	м	bj	М	Mull	6	2		>40	15
Ql008b	SL	CV			Harvest	sz	м	bj	w	Mull	3	4		40+	20
QI012	SiL	CV			Old Harvest		м	bj	w	Mull	2	3		>40	15
Ql019b	L	CV		N/A	Fire / Harvest		с	v	w	Mull	3	5		>30	20
Q1026	L	СС		N/A	Fire	z	С	bm	w	Mull	5	3		>40	35
DC027	SL	CV				sd	С	abc	R						>70
QI014	LS	CV		N/A	N/A		R	r	х	Mull	1	2		15	35
Q1022	SL	CV		N/A	N/A	s	М	x	R	Moder	5		3	20	25
QI018	SiL	СС			Harvest	sz	М	bj	м	Mull	7	4		>40	15
Q1028	SiCL	ST		N/A	N/A	z	М	bj	М	Mull	3	2		>40	5
QI010	Si	ST				z	М	bj	I	Moder	3		2	40+	0
QI015		СС		N/A	N/A	h	0	bp	v	Humic				>100	0
QI017		ST		N/A	Old Harvest		0	b	v	Humic				>80	0
Q1025		СС		N/A	N/A		0	vp	Р	Humic				>40	0
Q1002	SiL	СС			Harvest	z	М	bd	v	Mull	1	15		>80	5
Q1003	SiL	СС			Harvest	z	М	bj	Р	Mull	1	>20		>60	0
Q1009	SiL	ST	Yes			s	FA	р	Р	Mull	5		3	40	10
DC004	Si	СС				h	0	v	v	Humic					<20
Q1008		СС					0	b	v	Fibric				100+	0
QI021		СС		N/A	N/A		0	bd	v	Fibric				>80	0

								DCC: J. 20						
Q1024		ST	N/A	N/A		0	bp	v	Fibric				>50	0
Q1005		ST		N/A	m	0	bp	v	Mesic	2			>80	0
Q1020		CC	N/A	N/A		0	bd	v	Fibric				>80	0
Q1023		ST	N/A	N/A		0	bp	V	Humic				>50	0
Q1027		СС	N/A	Harvest		0	bp	v	Mesic				>50	0
Q1006		ST			m	0	pd	v	Mesic				>100	0
DC003		СС			h	0	vd	v	Humic					<20
QI016		ST	N/A	N/A	m	0	bp	v	Mesic				>100	0
DC005		СС				Oh	b	v	Mesic					<20
Q1001		ST		Old Pasture	h	0	bp	v	Humic				>100	0
QI013		ST	N/A	Old Pasture	h	0	р	v	Humic				40+	0
Raza 003	SL	CV	N/A	Fire / Harvest	sz	М	bj	w	Moder	7		2	>40	15
Raza 002	LS	CV	Wind	N/A		R	r	х	Mull	1	2		5-10	>50
Raza 01	SL	ST	N/A	Harvest	s	С	v	R	Moder	2		2	>40	>30
Read 22		СС			z	R	r	R		0	1		2	65
Read 21	LS	CV	Wind / SalSpray		ZS	С	x	R	Mull	2	2		15	25
Read 08	SiL	ST	N/A	Fire / Harvest	z	М	b	Р	Mull	4	9		>50	5
DC013	SiL	ST			z	W	pv	Р						<20
DC020		СС			mesic	0	hp	v	Mesic					
Read 15		СС	N/A	Old Pasture?	m	0	р	Р	Mesic				>30	0
Read 16		ST		Old Pasture?	h	0	р	v	Humic				>40	0
DC017	L	СС			sz	С	VS	R	Mor					35-70
Read 03	L	ST	N/A	Fire / Harvest / Cat Roads	ZS	M or WG	bp	W - M	Mull	8	3		>50	10

2 4.4.14 200									200.0.20					
Read 06	SL	СС		N/A	Harvest	sz	С	vj	w	Mull	3	6	>50	30
DC010	LS	CV					R	rs	R					35-70
DC016	L	CV				sz	С	v	R	Mor				35-70
Read 12	SiL	CV		Wind	N/A	z	R	r	х	Mull	2	2	5-10	75
DC010b	SL	CV				ZS	М	w	w					20-35
Read 07	SL	CV		N/A	Harvest	sz	С	x	R	Mull	3	3	>35	>35
Read 09	SL	CV		N/A	N/A	sz	М	x	R	Mull	4	2	>30	40
Read 10	SL	CV				sz	С	v	R	Mull	2	3	12	40
Read 11	LS	CV					С	v	R	Mull	3	2	>15	25
Read 13	SL	ST		N/A	N/A	sz	С	bj	w	Mull	3	3	>40	15
Read 04	SiL	ST		N/A	Fire / Harvest	sz	С	vm	W - R	Mull	4	5	30-40	30
Read 19	SL	CV		N/A	N/A	s	С	x	R		1	>15	>30	30
DC012	L	ST				z	М	bj	м					<20
Read 20	LS	ST		N/A	Harvest	sz	М	bj	М	Mull	3	8	>50	25
Read 50	L	CV		Wind	Harvest	s	М	bj	w	Mull	2	10	>40	10
Read 02	L	ST		N/A	Fire / Harvest	ZS	WG	р	I	Mull	4	4	>60	<10
Read 17	SiL	ST		N/A	Old Fire / Harvest	sz	М	bj	м	Mull	2	6	>50	15
DC015	SiL	ST	Yes			z	WG	рВ	I					<20
Read 01	SiCL	ST	Yes	N/A	Harvest	ZC	F	р	I	Mull	2	12	>50	5
Read 18	SiL	ST			Harvest	sz	М	bj	Р	Mull	2	25	>50	5
DC021	SiL	ST				ZS		bh	I	Mor				<20
DC014	SiCL	ST			Tidal	ZS	w	р	Р					<20
DC018		СС				fibric	0	bhp	V					

								200.0.20						
Read 14		СС	N/A	Old Fire		0	d	v	Humic				80	0
DC019		СС				0	vd	v	Mesic / Humic					
DC011		СС			h	0	v	Р	Humic					
Sonora 74		СС	N/A	N/A	fibric	0	bd	v	Fibric				>60	0
Sonora 64	SL	ST	N/A	Fire / Harvest	sz	м	b	w	Moder	5		2	>40	30
Sonora 69	L	CC	N/A	N/A	s	м	bm	w	Mull	6	2		>40	10
Sonora 73	SiL	ST	N/A	N/A	ZS	м	bj	М	Mull	8	5		>40	5
Sonora 63	LS	CV	Wind	N/A	sz	М	x	х	Moder	3		1	15-20	25
Sonora 70	SiL	CV	Wind	N/A	ZS	R	rk	х	Mull	2	2		2	25
Sonora 72	SiL	СС	N/A	N/A	z	М	bp	I	Mull	10	5		>40	5
Sonora 75	L	СС	N/A	N/A	sz	М	bm	М	Mull	8	3		>40	10
Sonora 71	L	СС	Wind		s	М	bm	I	Mull	6	2		40+	10
Sonora 58		ST	N/A	Harvest	m	0	bj	V	Mesic				40+	0
Sonora 60		СС				0	bd	V	Fibric				100+	0
Sonora 61		СС				0	bd	V	Fibric				100+	0
Sonora 02	SiL	ST			sz	М	bj	w	Mull	5	5		40+	5
Sonora 04	SL	ST		Harvet	sz	М	bj	w	Morder	6		2	60+	10
Sonora 53	SiL	CV			sz	С	bm	w	Mull	15	5		>40	30
Sonora 56		CV	N/A	Fire	sz	М	v	М	Moder	6		2	>40	20
Sonora 57	SL	ST	N/A	Harvest	s	С	v	w	Moder	8		2	>40	15
Sonora 62	L	СС		Harvest	szr	с	bk	w	Moder	6		2	40+	30
DC022	SiL	CV			z cobble	С	x	R						35-70
Sonora 06	L	CV	Wind / Saltspray	N/A	s	R	rs	х	Mull	2	2		>20	35

Buluna Leoi	.08.0a1 =tai								DCC. 5. 20						
Sonora 03	SL	CV				sz	М	vj	R	Mull	8	2		40+	15
Sonora 66	SL	ST			Fire	sk	с	vs	R	Moder	5		2	30+	40
Sonora 68	LS	CV		N/A	N/A	s	М	bj	R	Moder	20		8	>45	30
Sonora 01	SiL	CV				ZS	М	bj	М	Mull	2	10		40+	10
Sonora 76	SiL	ST			Fire / Harvest		WG	bj	М	Mull	6	3		>40	5
Sonora 05	L	CV		Wind	Windthrow	s	С	bm	R	Moder	4		2	>40	25
Sonora 51	SiL	ST		N/A	N/A	z	F	f	I	Mull	12	10+		<50	0
Sonora 54	SiL	ST		N/A	Fire / Harvest	z	М	bj	Ρ	Mull	2	>10		>40	10
Sonora 50		СС		N/A	N/A	m	0	bj	V	Mesic				>50	0
Sonora 65		сс		N/A	Harvest	h	0	b	V	Humic				>40	0
Sonora 59		ST					0	bj	VP	Mesic				40+	0
Sonora 67	SiL	ST	Yes	N/A	Harvest	sz	F	р	I	Mull	2	5		>40	0
Sonora 55		СС		N/A	N/A		0	bd	V	Fibric				40+	0
Sonora 52		сс		N/A	N/A		0	bd	V	Mesic				>100	0
SI001		ST				m	0	vp	V	Mesic				0-40	0
SI005		сс		N/A	N/A	f	0	d	V	Fibric				40+	0
SI007	SiL	ST		N/A	Fire / Harvest	sz	С	bm	w	Mull	2	3		>40	20
SI008	L	ST		N/A	Fire	sz	М	bj	М	Moder	4	2		>35	20
S1009	L	CV		N/A	Fire		С	bm	w	Moder	2	3		>40	20
SI003	SL	ST			Fire / Harvest	z	С	vm	R	Mull	2	2		40+	40
SI004	SL	CV		Wind	N/A	s	с	v	R		3	2		10-20	40
SI002	SiL	ST		Wind	N/A	sz	с	bm	М	Mull	3	8		>40	>35
SI006	SiL	ST		N/A	Fire / Harvest / Soil dist. / other	sz	M or WG	bj	Ρ	Mull	2	5		>40	0

Durunu Leo	- 8								DCC. 5. 20						
WR007		СС			Harvest	m	0	vd	v	Mesic	0				0
WR009		СС		N/A	Harvest/Beaver	h	0	v	v	Humic				40+	0
WR018		СС		N/A	Other		0	d	v	Humic					
WR008	L	ST		N/A	Harvest	sz	М	bj	м	Mull	3	11		>50	10
WR021	SL	ST		N/A	Fire / Harvest	ZS	М	bj	w	Mull	2	4		>50	20
WR011	SL	ST		N/A	Fire	sz	С	v	w	Mull	8	7		>30	35
WR006	SiL	ST		Wind	Harvest	k	С	vb	w	Mull	2	15		>40	10
WR022	SiL	ST	Yes	Water spray	Fire / Harvest	sz	М	jp	I	Mull	5	7		>30	20
WR010	SL	СС	Yes	N/A	Harvest	sg	GM	v	I	Mull	2		4	>50	20
WR100	SiL	СС			Harvest / spacing	sz	М	bj	М	Mull	5	5		>40	15
WR003	SiL	ST		N/A	Harvest	sz	М	j	I	Mull	7	18		>80	5
WR101		СС		N/A	Fire / Harvest		0	v	Р	Humic	2			>50	0
WR004		ST		N/A	Harvest	h	0	pj	Р	Humic				>80	0
WR102		СС				humic	0	bd	v	Humic				>50	0
WR002		CV		N/A	Fire / Harvest	mesic	0	x	Р	Mesic				>80	5
WR017		ST		N/A	Harvest	h	0	d	v	Humic				40+	0
WR013	SL	ST		N/A	Fire / Harvest	sz	MG	j	м	Moder	6		2	>80	30
WR020	LS	CV		Wind / Saltspray	N/A		R	r	х	Mull	3	2		10	35
WR001	LS	CC		Wind / Salt spray	N/A	k	С	xv	R	Moder	2	1		10	>50
WR019	SL	CV			Harvest	ZS	С	x	w	Mull	4	4		>30	>40
WR012	L	СС		N/A	Fire / Harvest	sz	M or MG	bj	М	Mull	5	10		>50	15
WR015	SL	ST		N/A	Harvest	sz	MG	j	М	Mull	3	5		>50	15
WR016	SiCL	ST		N/A	Fire / Harvest	z	MG	bj	Р	Mull	3	14		>50	0

	-												
WR014	SiL	сс	Wind / Saltspray		MG	j	V	Mull	1	6	20	>30	

Plot #	Rooting Depth	Gleying - Mottles	Seepage	Rest. Layer (cm)	Restrict Type	Structural Stage	Canopy Composition	Success Status	Crown Closure	Tree (A) %	Shrub (B) %	Herb (C) %	Moss/Lichen (D) %
DC007						6	mC		20	20	60	т	75
ER002		N/A	N/A	N/A		6	tC	MS	35	35	15	40	65
ER001					w	2b			0	0.1	5	35	5
WR005				1	L	1a			0	0	1	3	5
DC025				10	L	5	iC		10	10	10	0	95
MI101	10-20	N/A	N/A	10-20	L	7a	iC	MC	15	15	35	5	80
DC024						6	mC		35	40	15	70	15
DC026						5	tC		40	40	15	40	70
MI002	12	N/A	N/A	N/A		5	tC	YS	35	35	30	10	45
MI102	15	N/A	N/A	N/A		6	mC	MC	50	50	5	20	20
MI003	15	13	15	N/A		5	iM	YC	10	10	35	50	35
MI001	>20					3a			5	5	40	50	15
MI103	>15		10			6	mC	MC	40	40	30	50	60
MI100	>20					3a			0	0	90	10	0
DC023				<20	L	2a			0	0	25	40	80
Penn Island 01	15	N/A	N/A	N/A		5	tC	YC	40	40	25	0.1	25
DC001						2C			0	0	0	15	0
DC008				5	L	1b			0	0	1	30	75

Barana Eco	0									JCC: J: 2011			
DC009				>20	L	5	tC		20	20	20	0	80
DC002						5	tM		20	20	10	40	40
Q1007						2a			0	0	0	30	0
QI011		N/A	N/A	5	L	1b			0	0	0.1	20	80
QI019	>20	N/A	2			5	iC	YC	7	7	50	40	65
DC006						5	tC		20	20	35	20	65
Q1004	14	N/A	N/A	N/A		5	tC	YS	35	35	20	20	75
Ql008b	12					5	mC	YC	35	35	20	10	75
QI012	12	N/A	N/A	N/A		6	mC	MC	30	30	35	50	50
Ql019b	>10	N/A	N/A	N/A		5	tC	YC	40	40	5	10	15
Q1026	15	N/A	N/A	N/A		6	mC	OS	30	30	30	0	15
DC027						5	sC		30	30	30	5	80
QI014	15	N/A	N/A	15		5	iC	MC	10	10	25	15	80
Q1022	20	N/A	N/A	20	L	7a	mC	ос	20	20	75	0.1	75
QI018	>15	N/A	N/A	N/A		6	mC	MC	25	25	25	75	10
Q1028	18	N/A	N/A	N/A		6	mC	MC	40	40	35	5	80
QI010	15					6	mC	MC	45	45	25	10	80
QI015	>20			1	w	6	iC	MC	10	10	20	65	5
QI017	>20			2	w	6	iC	MC	15	15	40	65	20
Q1025		N/A	15			7a	mC	ос	15	15	75	10	35
Q1002	>15	5	5	N/A		5	iM		15	15	20	40	5
Q1003	>20		5	N/A		5	tC		25	25	30	20	15
Q1009	0		15			6	mM	MC	20	20	60	35	40

DC004						5	iC		15	15	5	45	0
Q1008			0			2d			0	0	60	25	80
Ql021	>20					3a			0	0	80	40	75
Q1024	>20	N/A	N/A	N/A		3b			3	3	60	50	75
Q1005	20		10			3a			0	0	75	20	0
Q1020	>20					3a			0	0	80	35	35
Q1023	>20					3a			0	0	80	30	0
Ql027	>20	N/A	0		w	3a			0	0	40	40	0
Q1006	>20		2	2	w	2b			0	0	0	65	10
DC003						2b			0	0	Р	70	5
QI016	>20					2b			0	0	0	90	0
DC005						3a			0	0	70	60	0
QI001	15	N/A	10	N/A		3a			0	0	40	60	5
QI013						3b			0	0.1	80	10	0
Raza 003	20	N/A	N/A	N/A		6	mC	MC	40	40	15	5	20
Raza 002	5-10	N/A	N/A	5-10	L	5	iC	MC	10	10	30	5	50
Raza 01	>10	N/A	N/A	N/A		6	mC	MC	45	45	5	0.1	15
Read 22	2			2	L	2b			0	0	2	20	15
Read 21	15			15	L	6	iC	MC	13	13	10	15	80
Read 08	>15	7	10	10	w	5	mC	YC	30	30	30	35	65
DC013						2b			0	0	0	80	0
DC020						3b			0	1	85	5	80
Read 15	>30					3a			0	0	60	50	0.1

Barana Ecol	0.000 -000									JCC: J: LOI			
Read 16	>20					3b			5	5	60	40	0
DC017						5	tC		45	45	т	5	60
Read 03	>25	N/A	N/A	N/A		5	mM	YS	35	35	5	20	15
Read 06	21	N/A	N/A	N/A		6	mC	MS	30	30	30	15	65
DC010					L	5	iC		10	0	0	1	50
DC016					L	5	iC		10	10	45	3	50
Read 12	5-10	N/A	n		L	7b	iC	OC	10	10	10	0.1	80
DC010b				40-80	L	1			0	0	0	1	65
Read 07	15	N/A	N/A	N/A		5	tC	YC	20	20	70	0.1	60
Read 09	18	N/A	N/A	20-30	L	7a	mC	OC	20	20	35	5	75
Read 10	12			12	L	7a	mC		20	20	40	10	75
Read 11	15			15	w	7a		ОС	20	20	45	0.1	50
Read 13	20	N/A	N/A	N/A		7b	mC	OC	40	40	30	0	40
Read 04	20	N/A	N/A	N/A		5	mC	MC	30	30	50	35	60
Read 19	12	N/A	N/A	40-50	L	6	iC	MC	10	10	50	0.1	80
DC012						7	mC		30	45	30	35	50
Read 20	15	N/A	N/A	N/A		6	mC	MC	30	30	15	75	25
Read 50	12	N/A	N/A	N/A		6	mC	MC	35	35	10	70	40
Read 02	20	N/A	N/A	N/A		5	tM	YS	50	50	7	25	15
Read 17	18	N/A	N/A	N/A		6	mC	MC	35	35	15	50	70
DC015						6	mC		25	25	23	65	0
Read 01	>20	10	N/A	N/A		5	tM	YC	15	15	35	50	50
Read 18	25	5	30	N/A		6	mC	MC	30	30	43	40	80

Durand Ecolo	gical Ltd.
--------------	------------

	0.000												
DC021						5	mC		40	49	22	25	30
DC014						2a			0	0	0	75	0
DC018						3a			0	0	45	43	75
Read 14	>20					2d			1	1	15	60	50
DC019						2b			0	0	5	40	10
DC011						2b			0	0	0	6	0
Sonora 74	>20	N/A	N/A	N/A		3a			0	0	50	35	80
Sonora 64	15	N/A	N/A	N/A		5	tC	YC	40	40	15	15	20
Sonora 69	12	N/A	N/A	N/A		7a	tC	OC	20	20	50	0.1	65
Sonora 73	21	N/A	N/A	N/A		7a	mC	OC	25	25	65	5	65
Sonora 63	15	N/A	N/A	15	L	7a	iC	OC	20	20	65	5	50
Sonora 70	2	N/A	N/A	2	L	6	iC	OC	10	10	25	1	80
Sonora 72	18	N/A	N/A	N/A		7a		OC	35	35	50	20	50
Sonora 75	18	N/A	N/A	N/A		7a	mC	OC	30	30	50	10	35
Sonora 71	14					7a	mC	OC	20	20	35	15	25
Sonora 58						Зb			5	5	80	30	5
Sonora 60	30		25			3a			0	0	80	30	75
Sonora 61	22					3a			0	0	80	30	50
Sonora 02	20					6	tC	MS	40	40	30	30	65
Sonora 04	20+					7	mC	OC	45	45	17	10	75
Sonora 53	>15	N/A	N/A	N/A		6	mC	MC	25	25	15	30	35
Sonora 56	10	N/A	N/A	N/A		5	tC		50	50	30	0.1	10
Sonora 57	>10	N/A	N/A	N/A		6	mC	OC	40	40	10	20	20

	0.000												
Sonora 62	17					5	tC	YS	50	50	5	5	5
DC022				>100	L	5	iC		5	5	15	25	80
Sonora 06	10	N/A	N/A	10-20	L	5	iC	MC	10	10	25	10	60
Sonora 03	22					6	mC	MC	40	40	50	0	65
Sonora 66	15					6	mC	MS	50	50	35	5	10
Sonora 68	22	N/A	N/A	N/A		6	mC	OC	35	35	45	0.1	65
Sonora 01	20					5	mC	YS	30	30	15	5	35
Sonora 76	18	N/A	N/A	N/A		6	mC	MS	55	55	25	40	25
Sonora 05	15	N/A	N/A	N/A		6	mC	DC	30	30	20	65	20
Sonora 51	>20	N/A	N/A	N/A		7a	mC		25	25	30	50	80
Sonora 54	10	N/A	10	10	w	6	mC	OC	15	15	35	50	25
Sonora 50	15		8			7a	tC	OC	20	20	40	20	80
Sonora 65						6	iC	MC	5	5	15	75	10
Sonora 59						5	iC		10	10	60	30	0
Sonora 67	>15	10	15			6	mC	MC	30	30	50	40	25
Sonora 55						Зb	iC	ОС	5	5	75	20	80
Sonora 52	20			0	w	3a			0	0	65	25	5
SI001	>20		18	18	w	2b			1	1	10	60	50
SI005				10	w	3a			5	5	50	40	75
SI007	15	N/A	N/A	N/A		5	tC		30	30	5	30	20
SI008	18	N/A	N/A	N/A		6	mC	MC	30	30	5	0.1	65
SI009	14	N/A	N/A	N/A		7a	mC	OC	40	40	15	20	25
SI003	12	N/A	N/A	N/A		6	mC	DC	40	40	10	20	30

SI004	10	N/A	N/A	10-20	L	5	iC	YC	15	15	25	20	50
SI002	15	N/A	N/A	N/A		6	mC	DC	40	40	10	60	20
SI006	10-15	N/A	10			5	mM	YS	35	35	50	15	30
WR007	10			10	w	3a			0	0	30	25	60
WR009		N/A	N/A		w	6		MC	23	23	80	35	15
WR018						2c			0	0	0	10	0
WR008	>25	N/A	N/A	N/A		6	+C	MS	25	25	30	1	75
WR021	20	N/A	N/A	N/A		6	mC	MC	40	40	10	5	10
WR011	>30	N/A	N/A	N/A		6	mC	MC	30	30	50	0	65
WR006	>20	N/A	N/A	N/A		5	mC	YC	40	40	15	35	70
WR022	>15	N/A	N/A	N/A		6	mC	MC	35	35	20	50	50
WR010	>30	N/A	N/A	N/A		5	mC	YC / MC	35	35	17	45	75
WR100	15	N/A	N/A	N/A		5	tC	YC	50	50	10	0.1	10
WR003	>30		N/A	N/A		6	mC	MC	30	30	25	40	80
WR101	>20		12	N/A		5	iC	YC	15	15	50	10	10
WR004		N/A	N/A	N/A		3a			0	0	75	5	0
WR102	>20			N/A		За			0	0.1	50	20	0
WR002	>42	N/A	N/A	N/A		Зb		YS	0	0	75	15	20
WR017						Зb			0	0	0	50	0
WR013	>20	N/A	N/A	N/A		5	mC		25	25	30	25	80
WR020	10	N/A	N/A	5-10	L	6	iC	MC	10	10	15	7	80
WR001	10	N/A	N/A	10	L	5	tM	YC / MC	15	15	20	25	40
WR019	>20	N/A	N/A	10-30	L	6	mC	MC	20	20	60	0	75

Durand Ecological Ltd.

WR012	>30	N/A	N/A	N/A		6	mC	MC	30	30	15	40	70
WR015	18	N/A	N/A	N/A		6		MC	30	30	25	40	50
WR016	>20	10	10	10	w	6	mC	MC	20	20	20	50	50
WR014	20	8	20	25	w	2b			0	0	0.1	40	0

Plot #	Species. List
DC007	Fd, Hw, Cw, Blecspi, Viola spp., UNID Grasses, Hylospl, Mahoaqu, UNID mosses
ER002	Hw, Rubuspe, Vaccova, Polymun, Blecspi Dryoexp, Hylospl, Plag sp., Rhytlor, Kindore, Kindpra, Rhizgla
ER001	Alnurub, Rubuspe, Caresit, Lysiame, Equiarv, Athyfil, Gali spp.
WR005	Spirdou, Rosanut, Seduore, Planmar, Pleccon, Collpar, Planmac, UNID Grasses, Trigmar, Raco spp., Dich spp., Bryumin
DC025	PI, Fd, Cw, Vaccpar, Dicr spp., Raco spp., Cladran, Cladina spp., Cladonia spp., Pleusch
MI101	Fd, Cw, Pl, Gaulsha, Vaccpar, Festocc, Hyporad, Crypt spp., Luzupar, Pleusch, Polyjun, Cladina spp., Dicr spp., Raco spp., Kindore
DC024	Fd, Cw, Hw, Polymun, Kindore, Hylospl
DC026	Hw, Cw, Alnurub, Sambrac, Vaccpar, Polymun, Blecspi, Tiartri, Hylospl, Rhytlor, Kindore, Plag spp., Rhizgla
MI002	Hw, Vaccpar, Vaccova?, Rubuspe, Dryoexp, Polymun, Plagund, Rhyttri, Hylospl, Plagins, Rhiz sp., Kindore, Dicr spp.
MI102	Fd, Cw, Hw, Acermac, Polymun, Kindore, Rhyttri
MI003	Hw, Cw, Rubuspe, Oplohor, Polymun, Lysiame, Dryoexp, Streros, Ranuunc, Equiarv, Athyfil, Galitri, Careobt, Ranu spp., Viola spp., Plagins, Rhizgla, Rhiz sp., Rhizmag, Kindore
MI001	PI, Cw, Ledugla, Gaulsha, Oplohor, Spirgra?, Rubuspe, Loniinv, Lysiame, Careobt, Phegcon, Ath yfil, Rh yttri
MI103	Cw, Hw, Ss, Vaccpar, Gaulsha, Lysiame, Blecspi, Athyfil, Tiartri, Hylospl, Rhiz spp., Plag spp., Kindore
MI100	Gale spp, spir spp., careobt
DC023	Malufus, Spirdou, Amelaln, Gaulsha, Rosagym, Allicer, Zigaven, Hier spp., Fritlan, Achimil, Pleccon, Collpar, Fragchi, Spiranthes spp., Ceraarv, Raco spp., Poly spp., Pleusch, Cladina spp., Dicr spp., UNID grasses and mosses

Penn Island 01	Fd, Cw, Hw, Vaccpar, Gaulsha, Polymun, Hylospl, Kindore
DC001	Typhlat, Carex spp., Nuphpol, Careaqu, Alnurub
DC008	PI, Fd, Amelaln, Hierspp., Achimil, Zigaven, Luzupar, Ceraarv, Collpar, Rumeace, UNID Grasses, Raco spp., Poly spp., Dicr spp., UNID mosses, Cladina spp., Cladonia spp., UNID Lichens
DC009	PI, Fd, Holodis, Vaccpar, Mahoaqu, Gaultheria spp., Rosagym, Hylospl, Rhytlor, Poly spp.
DC002	Hw, Fd, Alnus spp, Picea x, Ribelac, Rubuspe, Vaccpar, Equiarv, Athyfil, Ptilcri
QI007	Menytri, Brassch, Careobt
QI011	Fd, Hyporad, Achimil, Mimuals, Fest spp., Elym spp., Pteraqu, Polyjun, Poly spp., Racolan, Raco spp., Schiapo
QI019	Cw, Pl, Hw, Alnurub, Ledu spp., Drosrot, Carelas, Careobt, Carex spp., Equiarv, Viola, Lysiame, Spha spp., Sphasqu, Hylospl, Pleusch, Aulapal
DC006	Fd, Hw, Mahoaqu, Vaccpar, Rosanut, Pteraqu, Galitri, Adenbic, Ranu spp., Luzula spp., Hylospl, Pleusch
QI004	Hw, Fd, Vaccpar, Mahoaqu, Gaulsha, Polymun, Plagund, Kindore, Hylospl, Rhytlor
Q1008b	Fd, Cw, Hw, Gaulsha, Vaccpar, Polymun, Belc sp., Kindore, Plagund, Hylospl
QI012	Fd, Cw, Hw, Bg, Alnurub, Rubuspe, Vaccpar, Mahoaqu, Gaulsha, Polymun, Corncan, Pteraqu, Luzupar, Festspp., Galitri, Tiartri, Ranu spp., Hylospl, Kindore
Ql019b	Hw, Cw, Vaccpar, Gaulsha, Polymun, Plagund, Kindore
Q1026	Fd, Hw, Gaulsha, Hylospl, Rhytlor, Kindore
DC027	Fd, Hw, Vaccpar, Gaulsha, Mahober, Ribelac, Polymun, Pteraqu, Linnbor, Trielat, Kindore, Hylospl, Rhytlor
QI014	Fd, Gaulsha, Vaccpar, Holodis, Rosanut, Pteraqu, Luzu spp, Luzucam, Fest spp., Polyjun, Raco spp., Dicr spp., Poly spp., Pleusch, Hylospl
Q1022	Hw, Cw, Fd, Gaulsha, Vaccpar, Listcor, Hylospl, Rhytlor, Plagund, Kindore
QI018	Fd, Cw, Hw, Ss, Bg, Alnurub, Vaccpar, Rubuspe, Polymun, Hylospl, Kindore
QI028	Cw, Fd, Hw, Gaulsha, Vaccpar, Polymun, Blecspi, Pteraqu, Listcor, Moneuni, Linnbor, Rhytlor, Hylospl, Kindore, Plagins, Rhiz, UNID Liverworts
QI010	Fd, Cw, Hw, Vaccpar, Vaccova, Mahoaqu, Gaulsha, Linnbor, Pteraqu, Polymun, Viola sp., Kindore, Hylospl
QI015	Cw, Hw, Ss, Sambrac, Alnurub, Rubuspe, Lysiame, Careobt, Carelas, Athyfil, Oenasar, V, Rumax spp., Dichpel
QI017	Ss, Cw, Hw, Oplohor, Rubuspe, Vaccpar, Lysiame, Careobt, Ath yfil, Scrimic, Ranu spp., Oenasar, Pteraqu, Plagins, Rhiz spp., Kindore
Q1025	Ss, Cw, Hw, Pw, Gaulsha, Lysiame, Careobt, Athyfil, Pteraqu, Blecspi, Hylospl, Rhytlor, Spha spp., UNID Liverworts, Plagins

Q1002	Cw, Hw, Ss, Alnurub, Rubuspe, Vaccpar, Oplohor, Lysiame, Polymun, Equiarv, Athyfil, Oenasar, Cardoli, Careobt, Kindore
Q1003	Fd, Cw, Hw, Ss, Alnurub, Rubuspe, Gaulsha, Vaccpar, Lysiame, Equiarv, Blecspi, Athyfil, Polymun, Plagins, Rhiz sp., Kindore, Spha spp.
Q1009	Fd, Cw, Hw, Alnurub, Rubuspe, Rosagym, Oplohor, Lystame, Dryoexp, Polymun, Galitri, Ranu sp., Smilrac, Arulnud, Stach sp., Athylfil, Equiarv, Rhytlor, Rhyttri, Kinfore, Plagins, Rhiz sp.
DC004	Hw, Cw, Alnus spp., Careaqu, Lysiame, Athyfil
Q1008	Myrigal, Ledugra, Kalmmic, Cw, Oxyco xy, Lystame, Carelas, Drosrot, Spha sps., Sphasqu
Ql021	Hw, Cw, Pw, Ledum spp., Kalimic, Gaulsha, Oxycoxy, Drosrot, Pleusch, Spha spp., Sphacom
Q1024	PI, Pw, Hw, Ledum spp., Kalimic, Oxycoxy, Empenig, Drosrot, Eriocha, Carelas, Sphacom, Spha spp., Pleusch, Aulapal, Cladina spp.
Q1005	Spirdou, Myrigal, Careobt, Potepal
Q1020	Cw, Myrigal, Spirdou, Ledum spp., Kalimic, Carelas, Sphacom
Q1023	Myrigal, Spirdou, Carelas, Carex spp.
Ql027	Myrigal, Spirdou, Carelas, Caresit
Q1006	Careobt, Carelas, Carex spp, Equivar, Lysiame, Menytri, Siumsua, Aulapal
DC003	Careaqu, Carex spp., Lysiame, Potepal, Ranu spp.
QI016	Careobt, Lysiame, Oenasar, Scrimic, Galitri, Equiarv
DC005	Spirdou, Careaqu, Nuphvar, Scirpus spp.
Ql001	Spirdou, Careobt, Carex spp., Lysiame, Potepal, Aulapal
QI013	Spirdou, Alnurub, Careobt, Phalaru
Raza 003	Fd, Cw, Hw, Acermac, Mahoaqu, Gaulsha, Vaccpar, Polymun, Rhytlor, Kindore, Hylospl
Raza 002	Fd, PI, Arbumen, Arctcol, Gaulsha, Rosagym, Rubufru, Elymus spp., UNID Grasses, Polyjun, Poly spp., Cladina spp., Raco spp., Tort spp., Dicr spp.
Raza 01	Fd, Cw, Hw, Polymun, Gaulsha, Kindore, Polyjun, Rhyttri
Read 22	Rosanuk, Amilaln, Fd, Galitri, Fragchi, Festocc, Plantago sp., Callsta, Mimugut, Carelym, Allacu, Heucgla, Fritcam, Sagimax, Ceraarv, Luzumul, Clad sps., Raco sp., Tort sp.
Read 21	PI, Fd, Arbumen, Elymus sp., Hyporad, Polyjun, Disc sp., Clad sp., Raco sp., Tort., Poly sp., Pleusch.
Read 08	Cw, Hw, Ss, Gaulsha, Vaccpar, Lysiame, Careobt, Athyfil, Blecspi, Polymun, Kindore, Plagins, Rhiz spp., Hylospl

Durand Eco	ogical Etd. Dec. 9. 2014
DC013	Potepen, Juncus spp., UNID Grasses, Carex spp., Equistum spp.
DC020	Pl, Hw, Ledugla, Spirdou, Kalmmic, Carex spp., UNID Grasses, Pleusch, Sphagnum spp., Hylospl
Read 15	Spirdou, Alnurub, Malufus, Rosanut, Phalaru, Careobt, Carex spp., Equihye
Read 16	Cw, Ss, Alnurub, Saliluc, Salix spp., Malufus, Gaulsha, Loniinv, Spirdou, Rubuspe, Careobt, Lysiame, Equihye
DC017	Fd, Cw, Hw, Vaccpar, Rhytlor, Hylospl
Read 03	Fd, Hw, Acermac, Alnurub, Vaccpar, Polymun, Plagund, Hylospl, Kindore
Read 06	Cw, Hw, Fd, Vaccpar, Gaulsha, Polymun, Hylospl, Kindore, Rhyttri, Plagund
DC010	PI, Fd, Hw, Vaccpar, Hylospl, Raco spp, Dicr, Cladina spp
DC016	Fd, Pl, Cw, Arbumen, Ribelac, Gaulsha, Vaccpar, Rosagym, Hier spp., Lilicol, UNID Grasses, Dicr spp., Raco spp., Cladina spp.
Read 12	Fd, Pl, Gaulsha, Holodis, Vaccpar, Rosanut, Prunema, Rubuurs, Chimumb, UNID Grasses, Polygly, Polymun, Tortrua, Raco spp., Pleusch, Cladina spp., Hylospl
DC010b	Hw, Cw, Hylospl
Read 07	Cw, Hw, Fd, Pl, Vaccpar, Gaulsha, Polymun, Hylospl, Kindore, Rhyttri, Plagund
Read 09	Fd, Cw, Hw, Acermac, Gaulsha, Mahoner, Vaccpar, Polygly, Chimumb, Linnbor, Polymun, Pleusch, Hylospl, Kindore, Rhyttri, Dicrfus
Read 10	Fd, Cw, Hw, Gaulsha, Vaccpar, Holodis, Linnbor, Polymun, Hylospl, Rhyttri, Kindore, Pleusch
Read 11	Fd, Cw, Hw, Gaulsha, Rosanut, Holodis, Vaccpar, UNID Grasses, Hylospl, Polyjun, Pleusch, Dicr. Sp., Rhyttri
Read 13	Fd, Cw, Hw, Gaulsha, Vaccpar, Plagund, Kindore, Pleusch, Hylospl
Read 04	Cw, Fd, Hw, Acermac, Gaulsha, Mahoner, Vaccpar, Polymun, Linnbor, Chimumb, Listcor, Goodobl, Hylospl, Kindore
Read 19	Pl, Fd, Gaulsha, Holodis, Vaccpar, Luzupar, Dicr sp., Polyjun, Poly spp., Cladina sp., Hylospl, Pleusch, Rhyttri, Rhytlor, Kindore
DC012	Fd, Cw, Hw, Vaccpar, Acermac, Hylospl, Rhytlor, Plag spp.
Read 20	Fd, Hw, Cw, Bg, Ba, Acermac, Vaccpar, Polymun, Kindore, Hylospl
Read 50	Fd, Cw, Hw, Acermac, Vaccova?, Vaccpar, Polymun, Kindore, Rhyttri, Hylospl
Read 02	Hw, Ss, Alnurub, Rubuspe, Vaccpar, Polymun, Dryoexp, Blecspi, Hylospl, Kindore
Read 17	Fd, Cw, Hw, Vaccpar, Mahoaqu, Rubuspe, Gaulsha, Polymun, Pteraqu, Dryoexp, Blecspi, Corncan, Violcan, Kindore, Plagund, Hylospl, Rhiz. Spp., Rhyttri

DC015	Hw, Cw, Sambrac, Rubuspe, Rubuspe
Read 01	Cw, Hw, Alnurub, Rubuspe, Lysiame, Galitri, Ranu spp., Stacmex, UNID Grasses, Verobec, Ath yfil, Careobt, Blecspi, Oenasar, Circalp, Plagins, Kindore, Rhytlor, Mylitay, Polymun, Rhiz spp.
Read 18	Cw, Hw, Ss, Bg, Vaccpar, Gaulsha, Rubuspe, Lysiame, Equiarv, Polymun, Athyfil, Blecspi, Galitri, Careobt, Tiartri, Hylospl, Rhytlor, Kindore, Plagund, Plagins, Leafy Mosses
DC021	Cw, Hw, Picesit, Alnurub, Rubufru, Vaccpar, Carex spp., Lysiame, Hylospl, Rhytlor, Kindore
DC014	Salivir, Glamav
DC018	Kalmmic, Gaulsha, Hw, Oxytropis spp., Lysiame, Carex spp., Drosrot, Platdil, Sphagnum spp., Pleusch
Read 14	PI, Cw, Ledugro, Gaulsha, Empenig, Kalmmic, Saxi spp., Corncan, Drosrot, Oxycoxy, Carex spp., Careaqu, Spha spp., Pleusch
DC019	Spirdou, Careaqu, Careros, Sphagnum spp.
DC011	Cw, Hw, Carex spp., Ath yfil, Lysiame
Sonora 74	PI, Ledum spp., Gaulsha, Vaccmem, Hw, Oxycoxy, Erioand, Carelim, Drosrot, Menytri, Sphacom, Spha spp., Pleusch
Sonora 64	Hw, Fd, Vaccpar, Alnurub, Polymun, Tiartri, Viola spp., Galitri, Dryoexp, Rhyttri, Kindore, Rhiz. Spp., Plagund
Sonora 69	Cw, Hw, Fd, Abies spp., Abieama, Vaccala, Vaccpar, Gaulsha, Listcor, Hylospl, Rhytlor, Plagund, UNID Liverworts
Sonora 73	Fd, Hw, Cy, Bl, Vaccpar, Vaccova, Vaccala, Gaulsha, Comcan, Goodobl, Listcor, List spp., Hylospl, Rhytlor, Rhytrob
Sonora 63	Fd, Pl, Cw, Arctcol, Gaulsha, Vaccpar, Pteraqu, Fest spp., Dicr spp., Pleusch, Polyjun, Cladran, Cladina spp.
Sonora 70	PI, Fd, Cw, Pw, Gaulsha, Vaccpar, Pens spp., Fest spp., Cladina spp., Racocan, Cladonia spp.
Sonora 72	Ba, Cw, Hw, Cy, Hm, Vaccova, Vaccpar, Vaccala, Gaulsha, Menzfer, Blecspi, Lycocla, Lysiame, Listcor, Listspp., Corncan, Sphasqu, UNID Liverworts, Plag spp., Hylospl, Rhiz, Plagins Rhytlor
Sonora 75	Cw, Hw, Ba, Gaulsha, Vaccala, Vaccpar, Corncan, Tiartri, Blecspi, Stre ros, Listcor, Rubuped, Hylospl, Rhytlor, UNID Liverworts, Rhiz spp.
Sonora 71	Cw, Hw, Fd, Vaccala, Vaccpar, Gaulsha, Blec sp., List sp., Tiartri, Athyfil, Kindore, Plag sp., Rhis spp.
Sonora 58	Cw, Hw, Spir spp., Loniinv, Vaccpar, Lysiame, Careobt, Carex spp., Galitri, Oenasar, Ath yfil, Gymndry, Junc spp., Typhlat, Rhyttri
Sonora 60	Pl, Ledugra, Myrigal, Spirdou, Loniinv, Oxycoxy, Lystame, Careobt, Sphatri, Sphacom, Spha sps., Hylospl
Sonora 61	PI, Cw, Alnurub, Spirdou, Myrigal, Lonninv, Ledugla, Gaulsha, Salisco, Hw, Lystame, Careobt, Blecspi, Comcan, Hylospl, Shpaspp., Sphatri
Sonora 02	Cw, Hw, Fd, Gaulsha, Vaccova, Polymun, Blec sp., Plagund, Hylospl, Kindore, Rhytlor
Sonora 04	Fd, Cw, Hw, Ss, Vaccova, Vaccpar, Polymun, Listcor, Blec Sp., Kindore, Plagund, Rhyttri, Rhytlor, Barb sp., Hylospl, leafy mosses

Sonora 53	Fd, Cw, Hw, Ss, Alnurub, Vaccpar, Polymun, Kindore, Hylospl
Sonora 56	Hw, Fd, Cw, Vaccpar, Vaccova, UNID Liverworts, Plagund, Kindore
Sonora 57	Cw, Fd, Hw, Ss, Alnurub, Acergla, Polymun, Kindore, Hylospl
Sonora 62	Fd, Hw, Vaccpar, Polymun, Kingore, Rhyttri
DC022	Fd, Pl, Holodis, Vaccpar, Arctcol, Rubufru, Hier spp., Achimil, Zigaven, Luzupar, Artemisia spp., Racocan, Racolan, Cladina spp., Poly spp.
Sonora 06	PI, Fd, Arctcol, Gaulsha, Festocc, Hyporad, Achimil, Hier spp., Camas, Rubufru, Cladina spp., Tort spp., Raco spp., Polyjun, UNID Lichens and Mosses
Sonora 03	Fd, Cw, Hw, Vaccpar, Gaulsha, Listcor, Hylospl, Rhyttri, Kindore, Plagund
Sonora 66	Fd, Cw, Hw, Gaulsha, Mahoaqu, Vaccpar, Polymun, Kindore
Sonora 68	Cw, Fd, Hw, Gaulsha, Vaccpar, Listcor, Hylospl, Rhytlor, Kindore
Sonora 01	Fd, Cw, Hw, Ss, Alnurub, Vaccova, Vaccpar, Blec sp., Rhyttri, Kindore, Barb sp., Hylospl, Plagund
Sonora 76	Fd, Cw, Hw, Vaccpar, Mahoaqu, Polymun, Dryoexp, Blecspi, Kindore, Hylospl
Sonora 05	Cw, Hw, Fd, Rubuspe, Sambrac, Acergla, Vaccpar, Ribelac, Polymun, Dryoexp, Kindore, Hylospl, Rhytlor
Sonora 51	Cw, Hw, Ss, Acermac, Rubuspe, Oplohor, Vaccpar, Polymun, Blecspi, Athyfil, Tiartri, Dryoexp, Maiadil, Streros, Gymndry, Thelphe, Lysiame, Achltri, Hylospl, Rhyttri, Rhytlor, Kindore
Sonora 54	Cw, Hw, Oplohor, Rubuspe, Vaccpar, Menzfer, Lysiame, Tiartri, Gymndry, Thelphe, Streros, Blecspi, Caremer, Carex spp., Arundio, Athyfil, Pteraqu, List spp., Rhyttri, Plagins, Rhiz spp.
Sonora 50	Cw, Hw, Ss, Vaccova, Gaulsha, Vaccpar, Menzfer, Lysiame, Sphasqu, Rhyttri, Kindore, Plagins, Rhiz spp.
Sonora 65	Cw, Hw, Alnurub, Vaccpar, Gaulsha, Rubuspe, Careobt, Carelas, Oenasar, Galitri, Epil spp., Scirmic, Ath yfil, Spha spp., Plag spp., UNID Liverworts
Sonora 59	Cw, Hw, Ss, Spirdou, Gaulsha, Loniinv, Lysiame, Careobt, Carex spp., Men ytri
Sonora 67	Cw, Hw, Ss, Alnurub, Rubuspe, Vaccpar, Polymun, Lysiame, Athyfil, Tiartri, Phegcon, Rhytlor, Rhyttri, Plagins, Rhiz. Spp.
Sonora 55	Pl, Hw, Ledu spp., Empenig, Kalimic, Gaulsha, Eriocha, Drosrot, Oxyco xy, Pteraqu, Sphasqu, Sphacom, Spha spp., Cladina spp., Cladran
Sonora 52	S. gale?, Spirdou, Loniinv, Careobt, Lysiame, Sphacap, Sphasqu
SI001	Cw, Hw, Ss, Alnurub, Rubuspe, Vaccpar, Ledugla, Careobt, Carex spp., Lysiame, Menytri, Typhlat, Spha spp., Aulapal
SI005	Cw, Hw, Ledugla, Myrigal, Kalmmic, Gaulsha, Alnurub, Lysiame, Drosrot, Carex spp., Oxycoxy, Spha spp., Pleusch, Cladina spp., Rhyttri
SI007	Hw, Cw, Vaccpar, Alnurub, Polymun, Rhyttri, Plagund, Kindore

Durand Ed	ological Ltd.
-----------	---------------

SI008	Fd, Cw, Hw, Vaccpar, Vaccova, Listcor, Hylospl, Kindore, Rhyttri
SI009	Cw, Fd, Hw, Vaccova, Polymun, Rhyttri, Hylospl, Kindore
SI003	Cw, Fd, Hw, Acermac, Alnurub, Polymun, Hylospl, Rhyttri, Kindore, Plagins, Rhytlor
SI004	Fd, Holodis, Gaulsha, Vaccpar, Festocc, Camas, Mimugut, Myos spp., Hyporad, Cladina spp., Raco spp., Tort spp., Pleusch, Dicr spp., UNID Lichens
SI002	Fd, Cw, Hw, Ss, Acermac, Vaccpar, Polymun, Dryoexp, Hylospl, Kindore, Rhytlor
SI006	Cw, Hw, Ss, Alnurub, Vaccpar, Vaccova?, Rubuspe, Acergla, Sambrac, Lysiame, Equiarv, Dryoexp, Gymndry, Achltri, Kindore, Plag spp., Rhiz sp., Plagins, Hylospl, Rhytlor
WR007	Ledum spp., Kali, Spirdou, Nuphvar, Drop, Oxyco xy, Spha spp.
WR009	Cw, Hw, Gaulsha, Lysiame, Blecspi, Careobt, Junc spp., Spirdou, Carex spp., Leafy Mosses, Spha spp.
WR018	Nuphar, Polygonum spp., Menytri, Typhlat
WR008	Cw, Fd, Hw, Alnurub, Abiemon?, Gaulsha, Vaccpar, Pteraqu, List spp., Hylospl, Kindore, Plag spp.
WR021	Fd, Cw, Hw, Gaulsha, Mahoaqu, Vaccpar, Polymun, Hylospl, Rhyt spp., Kindore
WR011	Cw, Hw Fd, Pw, Gaulsha, Vaccpar, Pteraqu, Goodpbl, Hylospl, Kindore, Rhytlor
WR006	Cw, Hw, Acermac, Gaulsha, Polymun, Hylospl, Kindsch?, Plag sp., Rhyttri
WR022	Fd, Cw, Hw, Vaccpar, Gaulsha, Polymun, Hylospl, Rhyttri, Kindore
WR010	Cw, Hw, Fd, Gaulsha, Vaccpar, Acercir, Rubuspe, Polymun, List spp., Dryoexp, Blecspi, Hylospl, Kindore, Rhyt spp.
WR100	Cw, Fd, Hw, Bg, Alnurub, Vaccpar, Vaccova?, Dryoexp, Polymun, Rhiz sp., Plagins, Kindore, Plagund
WR003	Cw, Hw, Fd, Gaulsha, Polymun, Galitri, Rubuped, Hylospl, Rhyt spp., Dicr. spp., Kind spp.
WR101	Cw, Hw, Fd, Ss, Gaulsha, Ledugla, Rubufru, Rubuspe, Lysiame, Blecspi, Hylospl, Kindore, Plagins, Rhiz spp.
WR004	Spirdou, Typhlat, Junc spp., Careobt, Careaqu, Equiarv
WR102	Cw, Spirdou, Myrigal, Ledugla, Gaulsha, Careobt, Carex spp., Drosrot
WR002	Hw, Cw, Fd, Ss, Pl, Alnurub, Rubuspe, Gaulsha, Ledu spp., Saliluc, Salix spp., Lysiame, Junc spp., Junccom, Careobt, Carex spp., Equihye, UNID Grasses, Leafy Mosses
WR017	Careobn, Junceff, Equiarv, Polygonum spp., Phraaus, Lysiame
WR013	Cw, Hw, Ss, Fd, Vaccpar, Gaulsha, Pteraqu, Polymun, Blecspi, Hylospl, Kindore

WR020	PI, Fd, Arbumen, Arctcol, Junisco, Pachmyr, Gaulsha, Amelaln, Rubuurs, Pleccon, Penspro, Saxi spp., Hyporad, Listcau, Hieralb, Collpar, Bromvul, Polygly, Death-Camas, Boschoo, Listcor, Aquifor, Fragchi, Cladran, Polyjun, Poly spp., Pleusch
WR001	Fd, Arbumen, Junisco, Holodis, Mahoner, Achimil, Mimuals, UNID Grasses, Zigaven, Allicer, Crypcri, Polymun, Polygly, Aspl spp., Collpar, Mimugut, Galiapa. Seduore, Tortula spp., Dicr. Sp., Amph sp., Schi sp., Cladina sp.
WR019	Fd, Cw, Gaulsha, Vaccpar, Hylospl, Pleusch, Kindore, Polytrichum spp., Polyjun, Cladina spp., Barb spp.
WR012	Cw, Hw, Fd, Alnurub, Polymun, Blecspi, Hylospl, Kindore, Rhyt spp.
WR015	Cw, Fd, Hw, Ss, Alnurub, Vaccpar, Mahoner, Gaulsha, Polymun, Blecspi, Hylospl, Kindore, Rhyt spp.
WR016	Cw, Ss, Hw, Alnurub, Gaulsha, Vaccpar, Rubufru, Lysiame, Blecspi, Careobn, Equiflu, Hylospl, Kindore, Rhyt spp., Plag spp.
WR014	Rubu spp., Careobn, Poteans, Hierodo, Ranu spp., Lath spp., Galitri, Distspi