To the Reader

PARKS BRANCH
DEPARTMENT OF RECREATION AND CONSERVATION

OFFICE OF W. G. Hazelwood Parks Biologist

2-4-6-42

October 25 76

RE: Trip to Kwadacha Provincial Park

This "trip report" is an observational record of a brief visit to a wilderness Provincial Park. Recommendations given are suggestions for management to consider - to accept and implement or to refuse and ignore. Other regional additional factors may be in effect of which the author is unaware at the time of the visit and subsequent documentation of his field activities within the Park. In short this is an informational report only on a little-known Park.

W. G. Hazelwood
October 1976

KWADACHA PARK 1976

Kwadacha Park Trip

An aerial and ground reconnaissance was carried out in Kwadacha Park, August 2 - 7 inclusive. The Park was surveyed in a Cessna 185 chartered from NT Air and piloted by Norm Marples. Ground work was carried out in the vicinity of the NE end of Haworth Lake. Further investigations were carried out by Milt Warren in the Chesterfield Lake - Bedaux Pass area from August 8 - 22 inclusive.

Other Park users encountered were a Cessna 185 with 3 hunters that landed on Haworth Lake on August 3 to look for mountain sheep (the only species season open at that time) and two Fort St. John hunters back-packing in the Mt. Grey - Dryas Peak area from August 1 to 11th. The latter two sheep hunters based out of the cabin at the northeast end of Haworth Lake. This cabin was built in 1974 by a Mr. Kemerer despite a Parks Branch refusal to allow its construction.

The weather was poor during the trip with rain occurring each day and night. The lake rose in level of approximately 6 inches during our stay, causing the firepit to be flooded out in our campsite.

Other use of the area was in evidence, as a moose-hunting campsite was located at the upper end of Haworth Lake. Evidence of a campsite on one of the alluvial fans was also found and trees on the edge of the gravel bar were topped in order to allow a wheeled or ski equipped aircraft to land near this campsite. An overturned boat was also observed at the trail leading over to Chesterfield Lake. This may be the property of Don Peck, guide-outfitter in the area, who also has a new large log cabin on the shore of Chesterfield Lake.

This cabin was locked and contains bunks for 4-5 people, gear, food and a rifle. Two boats are also padlocked to a chain on the

Milt Warren and Grant Hazelwood in camp on Haworth Lake with Llamberis Glacier beyond.

Avalanche track and fan on north end of Haworth Lake. This is good summer habitat for moose and bear.

shore. It should be placed under Park Use Permit.

Sheep hunters from Prince George were reportedly camped on the south side of Chesterfield Lake but were never encountered. They were also there in 1975 on a successful hunt.

Wildlife

The main animal populations in Kwadacha Park are mountain goat, moose and hoary marmots. Of incidental occurrence may be black bear, grizzly, caribou, stone sheep and Rocky Mountain elk. The latter two on the east and southeast margins of the Park. The following table contains some of the observations of this trip.

Mammals

Species	Numbers			Location	
	ර්	우	imm.	uncl.	
caribou				2	Chesterfield Lake
mountain goat """ """ """ """ """ """ """	1 1 - -	5 3 - -	3 2 - 4	- 6 7 13	northwest of Llanberis Glacier south of Stagnant Glacier Dryas Peak north of Haworth Lake between Grey Peak and Lupine Ridge Mt. Chesterfield
moose "	1	1 1			slough off Warneford River 1 mile above Quentin Lake/Aramis lake Chesterfield Lake
wolverine				1	alpine south of Survey Peak
Least Chipmunk		1	1		moraine of Llanberis Glacier
Deer Mouse		1	1	7	cabin at northeast end of Haworth Lake
Hoary Marmot				5 2 1 6	northwest of Llanberis Glacier Cloudmaker Mountain Dryas Peak

<u>Hedysarum boreale</u> (wild sweet pea) grows on the moraine below the Llanberis Glacier.

The Least Chipmunk was harvesting a winter food supply (<u>dryas</u> <u>drummondi</u>) on the moraine.

Species	Number	3_	Location
	8 P im	n. uncl.	
Porcupine		2 cabin on Kwadacha	Chesterfield Lake, R.
Wease1		1 Chesterf	ield Lake

* Grizzly - tracks of a large and small bear were seen at Chesterfield Lake

Reptiles and Amphibians

Northwestern Toad - 1 unclassified - moraine of Llanberis Glacier

The 52 goats observed are likely only half or less of the total Park population. Tracks of goat were observed on Cloudmaker mountain above Chesterfield Lake but no animals were observed here. The parent rock of the mountains is mainly schist in the western slopes of the Rockies around the Park area. This rock is exceptionally slippery when wet - which is often in this glacially dominated area. It is not conducive to favoured goat habitat.

Moose generally have good habitat available in the wet swamps adjacent to the Warneford and Kwadacha rivers. A mineral lick was seen west of the Aramis lakes that appears to be utilized by moose in that area. The many slides in the steeply sided valleys are also utilized heavily by moose. Trails, beds, droppings and jousting trees are all evidence of summer and fall use. Browse evidence on the willow in particular is evident on the alluvial fans and bars of the many streams which indicate winter use of the lower slides and similar areas around the edges of the lakes and streams. Burn areas from recent forest fires in the confluence area of Chesterfield Creek

and Warneford River will also benefit local moose populations in future years. Moose trails in some areas are recent and heavily used.

Other animals not sighted but leaving track evidence of their presence are beaver, wolves, black bear, grizzly bear and packrat. The only amphibian species sighted was the one toad found on the glacial moraine.

Birds

The bird population of the Park is surprisingly varied considering the rain forest habitat involved. There are many open deciduous slide and riparian habitats and these along with the lakes and streams themselves present the necessary diversity to support the bird life in the area. The following table is a list of the bird species sighted.

11

Species

Canada geese

Mallards
Goldeneye
Herring gull
Red-throated loon
Common loon (2 pair)
Northern Shoveler
Lesser yellowlegs
Long-billed dowitcher
Least sandpiper
Solitary sandpiper
Mountain chickadees
Bohemian waxwings
Golden-crowned sparrow

Warbling vireo Solitary vireo

Pine siskin

Location

Warneford River above Quentin lake(30 or more)
Chesterfield Lake (7 females)
On Haworth and Chesterfield Lakes (3 young)
Haworth Lake, Chesterfield Lake
Haworth Lake
Chesterfield Lake
Haworth, Chesterfield lakes (33 in all)
Haworth Lake (30 in flock)
Haworth Lake (with above 30 yellowlegs)
shoreline of Haworth Lake
"""""""""
arboreal forest Haworth Lake
moraine of Llanberis Glacier
arboreal forest Haworth Lake

Haworth Lake and the alluvial area with Cloudmaker Mtns. in rear.

Note foreground slide area inhabited by both bears and moose in summer.

Chesterfield lake offers the only good fishing in Kwadacha Park. Mt. Crosby forms the backdrop.

<u>Species</u> <u>Location</u>

Dark-eyed junco arboreal forest Haworth Lake Olive-sided flycatcher 11 11 11 Vesper sparrow Wilson's warbler 11 open slide fans 11 11 11 Pine grosbeak 11 and Chesterfield Lk. 11 Grey jay arboreal forest Robin open slide fans Tree swallow open areas and over Haworth Lake Tree sparrow slide areas. Haworth Lake Yellow-rumped warbler arboreal forest Haworth Lake alluvial fan Rufous hummingbird 11 Spruce grouse Rock ptarmigan Lupine Ridge Goshawk Llamberis Glacier - alpine area (1 pair) Golden eagle Chesterfield Lake Kingfisher

Of special interest were the feeding habits of the northern shovelers as fifteen of them formed a habit of feeding in the evening on surface detritus on Haworth Lake and then would fly up to the glacier and catch rising air currents to help them circle up and over to the Warneford river where they apparently spend the night. The closely knit flock fed in a triangle formation with 3-4 birds at the point, then after several moments they would drop back and 3-4 more would lead and feed. On several occasions they would also form a single line and parallel feed before closing up ranks again. Likely the lines of drift on the lake surface dictated these feeding patterns but pleasant hours of watching with the spotting scope were put in by this observer to try and decipher the feeding habits of this delightful species.

The grey jay, spruce grouse and ptarmigan were unexpectedly rare in the Haworth Lake area and the horned lark was conspicuous by its absence as well.

Fish

The fishery was not well explored during this trip. No fish were caught in Haworth Lake, Quentin Lake was not tested and Chesterfield Lake produced rainbow trout and Dolly Varden in the one to four pound range. Tapeworms were found in the body cavity of most fish caught.

FISH CAUGHT DURING TRIP

DATE	DOLLY VARDEN	RAINBOW	COMMENTS		
Aug. 2, 1976		female, 36.7 cm,	gut worms present		
		450 gr.			
Aug. 7	1 (18")	3 (14", 14", 15")	all had tapeworms		
Aug. 8	4 (1 pound each)	7 caught			
Aug. 9		11 caught, 4 released			
Aug. 11		1 caught			
Aug. 12		1 (1 1/2 lbs)7 caught			
Aug. 13	7 caught	l caught			
Aug. 14	5 caught				
Aug. 16		3 caught			
Aug. 17	2 caught	3 caught			
Aug. 18		1 small one caught			
Aug. 19	4 (22,19,19 1/2 and	8 (all about 15")			
A 20	15 inches)				
Aug. 20	3 (17,18 1/2, and 20")				
Aug. 21	1(22"), another				
A	small one 1 (20")				
Aug. 22	1 (20)				

Vegetation

The vegetation is that of a subalpine rain forest.

Spruce and alpine fir dominate the forest canopy. The understory on the alluvial bottoms is mainly willow and Sheperdia canadensis while under the deeper forest mosses and huckleberry predominate.

A list of collected plants of the region is added to this report as an appendix.

The goat-inhabited ridges seen from Haworth lake with Mt. Glendower in a cloudbank.

Haworth lake and the inlet streams as seen from the above goat ridges in the rain.

The Park

The area of the Park is 414,000 acres and much of it is under the Lloyd George icefield and its attendant glaciers. This glacial domination and the location of the Park on the west side of the high Rockies dictates heavy rainfall and a short growing season. The hanging glacier near Survey Peak was constantly advancing and calving off large chunks (some 30 tons or more) of ice from the toe of the glacier which self-destructed on the steep slopes below.

Llamberis Glacier is the most photogenic, located as it is on the northeast end of Haworth Lake. The braided stream and game trails make the two mile hike from lake to glacier an easy one.

The trip to the Stagnant Glacier from the lake is also easy if one finds the high moose trail on the west side of the stream canyon. The braided stream and extensive moraine over the lower glacier make easy scrambling if the schistose rock is not wet. If wet it is slick and treacherous as are the mountains in rain.

Also of photographic interest are the stream aspects from the glacier on Survey Peak. One stream has a 100 foot free fall and the other 200 yards away gushes out of the base of the cliff. Glacial silting of the "spring" water indicates a glacial origin from the same source as the waterfall stream.

The steep cliffs and chutes falling straight into the water on the northeast corner of Haworth Lake will not allow hikers to scramble from the end of the lake to the Chesterfield Lake trail or vice versa.

The trail system is generally quite good in Kwadacha Park.

The Bedaux Trail from the Muskwa River headwaters, passes Fern Lake in the Bedaux Pass and continues down to Chesterfield Lake. The crossing of the North Kwadacha River is not possible to the hiker,

Quentin lake and its islands form the third large waterbody in the Park. The meandering floodplain is formed by the Warneford river and offers preferred summer habitat to waterfowl, beavers and moose. only to horses. A cable bridge would be a great help to hikers' safety. It passes south of the lake and continues down the creek past the Aramis lakes and on down the Warneford River and Kwadacha River to Fort Ware. This is an excellent horse trail used regularly by the resident guide-outfitter. Game trails extend into many of the side valleys from this main trail through the Park, including a horse trail to the headwaters of the Warneford River.

Recreation Values

The main recreation is hunting, both guided and non-guided, and fishing. Recreational hiking from the lake access is also good if one chooses the right campsite on the right lake. Boats (3 of them) owned by the guide are locked up and available only to his clients which must frustrate others to extremes. The open-door policy of the northland is fast fading in the face of abuse and mischief from some uncaring members of the urban public who exhibit latent rip-off tendencies on short wilderness trips. During our stay at Haworth Lake August 2 - 7 the lock was broken off the cabin on Chesterfield and thrown into the lake.

AIRCRAFT USE OF PARK

î

DAT	E	LOCATION		AIRCRAFT & PEOPLE
	-			
Aug.	Τ	Haworth Lake		Cessna 185 - dropped off two hunters
Aug.	2	tt 11		" - author & two companions arrive
Aug.	3	11 11		" - 3 people (hunters) - meet Parks Br.
		0.		biologist and leave
Aug.	7	Park		Twin Otter, flew low overhead Chesterfield Lake
Aug.	7	Haworth Lake		Beaver took author to Spatsizi; moved companions
				to Chesterfield Lake
Aug.	8		Lk.	Cessna 185 - 3 people fishing left same day
Aug.	10	ŧŧ	11	" - 3 people 2 stayed
				Seabee pusher plane 1 person, left same day
Aug.	18	ff	11	Two people picked out by Cessna 185

View of Survey Peak from the braided stream draining the valley of the Stagnant Glacier.

The Stagnant Glacier is covered with rubble for two miles of its length.

One hundred foot waterfall and snowbridge in middle foreground. This is a glacier run-off stream. Goats utilize the cliffs and slope on right.

Milt Warren and snowbridge over turbulent waterfall stream. The danger of using these thin bridges is very high.

The second stream 200 yards from the waterfall issues directly from the base of the cliff. Its source is also the glacier above the cliffs.

DATE		LOCATION		AIRCRAFT & PEOPLE
Aug. 19	9	Chesterfield	Lk.	Helicopter - Geological Survey of Canada based in Laurier Pass. Came fishing. Beaver on floats flew over to Fort Ware and back
Aug. 20	0	11	***	Beaver on floats flew over to Fort Ware and back overhead - likely based at Tuchodi Lakes.
Aug. 2:	1 2	11	**	Wheeled plane flew over low Cessna 185 - Lifted out Milt Warren to Mackenzie.

Fishing is apparently only viable in Chesterfield Lake. Haworth Lake appears barren and Quentin, Fern and the Aramis lakes are unknown quantities at present. The presence of the red-throated loon on Haworth Lake may indicate fish are present in the lake. Goldeneye were also observed feeding on invertebrates in the lake so there is a food chain present. Suitable spawning areas are minimal as the schist bedrock degenerates into flat cobbles unsuitable for good spawning use, and the inlet glacial streams are 3°C which is too cold for successful spawning. The lake outlet, above the falls may provide marginal spawning habitat for a small population of fish.

Spawning potential is apparently good at Chesterfield Lake since good populations of rainbow and Dolly Varden exist in the lake.

Conclusions

Kwadacha Park is our most remote park as far as access from roads is concerned. Hunting, hiking, mountain climbing and photography are the main recreational features that would serve as public attractants. Mountain goat and moose are the most numerous and visible of the larger wildlife species inhabiting the park.

Bird life is varied and interesting along the lake shorelines and riparian habitat particularly where avalanche fans intercept the above two habitats. This avalanche habitat is also seasonally occupied by

moose and bears as evidenced by the fresh beds and trails encountered in these areas. It is expected that occasional sightings of stone sheep and elk may take place in the headwaters of the Tuchodi and Muskwa river systems which form the eastern margin of the park.

Caribou could also be encountered here on an irregular basis similar to grizzly bear sightings. In fact if the eastern side of the Rockies is not also schist rock then it may be more favourable as wildlife habitat than the west side.

Recommendations

- The Haworth Lake cabin be removed as it was constructed in trespass after being forbidden.
- 2. The guides cabin on Chesterfield be placed under P.U.P. and a key made available to Parks Branch.
- 3. The Bedaux trail crossing of the North Kwadacha River be provided with a cable crossing for hikers.

Acknowledgement

I would like to acknowledge the experience, companionship, expertise and effort of Milt Warren, Information and Education Officer of the Fish and Wildlife Branch, who devoted part of his holidays to this trip. To him I am deeply grateful.

W. G. Hazelwood Parks Biologist August, 1976

CHESTERFIELD LAKE

	* =>= <===			LD LAKE	
SPECIES	LENGTH	WEIGHT	SEX	AGE	REMARKS
Rainbow	37.5 cm	500 gm	М		good condition
Trout	37.5 cm 36.7 cm	450 gm 450 gm	M F		thin, gut worms tapeworms present
Dolly Varden		425 gm	F		excellent condition, filled
		1500	F		with eggs
	-	1590 gm	Г	,	caught off a rock bluff, N.E. end of lake
	52.5 cm	15900gm	F		bait: rainbow head, ground
	56.0 cm	1800 gm			squirrel in stomach best Dolly seen from lake,
	30.0 Cm	1800 gm			very good shape - used bait
					1:30 p.m.
	ļ				
		ļ			
]			8
					· ·
	į				
		27			
	*			7.	· ·
	.,				
			ļ		500.7
•		Nati			*
			51		
			[1	_
	55				
				8	
				:	
				:	
					4
			*	8	
	1	1	1		

ENVIRONMENTAL LABORATORY 11/8/76 BRANCH LABORATORY REQUISITION-REPORT ENVIRONMENTAL LABORATORY WATER RESOURCES SERVICE SAMPLING SOURCE -SAMPLED BY PERMIT OR SITE NUMBER 7.610,810,71 RESULTS OF FIELD TESTS BAROMETRIC PRESSURE (ins. Hg.) OXYGEN DISSOLVED (mg/l) SPECIFIC CONDUCTANCE (µmhos/cm) W301 0,0 0,1,7 0,001,4 FLOW pH (units) 02 0,0 0,1,81 0,00,0,4 0,0 0,1,3 ALKALINITY:TOTAL (CaCO3) (mg/l) CHLORINE: RESIDUAL (mg/i) DATE REPORTED MONTH DAY NO. OF TES REMARKS -FIELD PREPARATION OF SAMPLES (REFER TO WATER RESOURCES CHEMISTRY LABORATORY INFORMATION MANUAL.) CHECK / A GENERAL IONS QUANTITY UNFIL PERED, UNPRESERVED. 4500 ml SEPARATE BOTTLE: KEPT COOL: AIR EXCLUDED IS SAMPLE 1250 ml CHLORINATED? 500 REMARKS -IS SAMPLE TAKEN IN SALT OR ESTURINE WATER? COPIES OF THIS REPORT ARE TO BE SENT TO . CHECK SUBMITTER (AS ABOVE) ____POLLUTION CONTROL BRANCH, VICTORIA OTHER (PLEASE SPECIFY)

ENVIRONMENTAL LABORATORY BRANCH LABORATORY REQUISITION-REPORT

11/8/76

ENVIRONMENTAL LABORATORY TER RESOURCES SERVICE	Pades Clanch	6,0,3,1,3,AB
SAMPLING SOURCE	Quantin lake	SAMPLED BY
	MPLE SUBMITTING START OF SAMPLING FINISH OF SAMPLING FFE AGENCY YEAR MONTH DAY HOUR MINUTES YEAR MONTH DAY	TOWER DEPIN
8 10 19 ^{TY}	PE AGENCY YEAR MONTH DAY HOUR MINUTES SYEAR MONTH DAY	HOUR MINUTES FEET LOCATION SAMPLE VERT, COMP.
CHECK ALKALINITY:PHENOLPTHALEIN	(CaCO3) OXYGEN: BIOCHEMICAL DEMAND (5 DAY)	RESIDUE:NON FILTERABLE (105° C)
W301 1,0,1	0XYGEN: DISSOLVED (mg/l)	RESIDUE: VOLATILE NONFILTERABLE (550° C)
O2 1 1, O, 2 1 1 CALCIUM: DISSOLVED (Ca)	DH (units)	0,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
O3	3,110,0,4,0,1,0,1K	SETTLEABLE MATTER
04 1,0,4 1 1 FLUORIDE: DISSOLVED (F)	RESIDUE TOTAL (105° C)	SPECIFIC CONDUCTANCE (pmhos/cm)
05 1,0,6	RÉSIDUE TOTAL FIXED (550° C)	TURBIDITY (units)
HARDNESS:TOTAL (CaCO3)	RESIDUE: FILTERABLE (105° C)	
Q		
16	<u></u>	
17		
18.		
NOTE - UNLESS OTHERWISE I MEASUREMENTS ARE IN MILLIGRA REMARKS (LABORATORY USE ONLY)	AMS PER LITER. TO STATE MONTH DAY	SIGNATURE
	TRANSIT-RESULT REPORTED MAY	NOT BE NO OF TESTS DATA FOLLOWS
	TE AT TIME OF SAWALIE -	

ENVIRONMENTAL LABORATORY BRANCH LABORATORY REQUISITION-REPORT

11/8/76

ENVIRONMENTAL LABORATORY	TEABORATORT REQUISITION-REP	OHT		
WATER RESOURCES SERVICE	Cala Risida		LABORATORY USE ONL	Y ,
SAMPLING SOURCE -	SUBMITTING AGENCY		6031,2A	(F
Chester Fiel	doka	SAMPLED	BY . 4. Haza wa	col
PERMIT OR SITE NUMBER SAMPLE SUBMITTING	START OF SAMPLING FINISH OF SAME		Comotic Jon	i C
19 21 23	AR MONTH DAY HOUR MINUTES YEAR MONTH DAY	HOUR MINUTES	SAMPLING DEPTH SAMPLE COMP. LOWI FEET LOCATION SAMPLE VER 13 47 48 49	ER DEPI
w1 1 1 1 1 0 1 9 1 7	610,810,211,20,01			
	RESULTS OF FIELD TESTS		9	
BAROMETRIC PRESSURE (ins.Hg.)	OXYGEN DISSOLVED (mg/l)	SBECIE	S CONDUCTION I	
w301 0,0 0,1,7	0,00,1,4	0,00,1	C CONDUCTANCE (µmhos/	/cm)
FLOW	pH (units)			1
02 0,0 0,1,8	0.00,0,41		HATURE AT SAMPLING (• C}
ALKALINITY:TOTAL (CaCO3) (mg/l)	CHLORINE:RESIDUAL (mg/l)		·	11
03 0, 0 1, 0, 2, 1, 1	0,0 0,1,6, 1,1, 1,1,1,1,1		XTINCTION DEPTH (ft.)	
		<u> </u>	.91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
			1	
				1.1
YEAR	REPORTED MONTH DAY			
2			NO. 178	OF TES
REMARKS -	ŞIĞN	ATURE	1	
~				
BOTTLE CODE	IPLES (REFER TO WATER RESOURCES CHEMISTRY LABORA	TORY INFORMATI	ON MANUAL)	
CHECK V		QUANTITY	en manual)	
BB.O.D.	UNFILTERED, UNPRESERVED.	4500 ml		YE
	SEPARATE BOTTLE: KEPT COOL: AIR EXCLUDED.	1250 ml	IS SAMPLE CHLORINATED?	
			E	NO
REMARKS -			IS SAMPLE	YE
			OR ESTURINE	
			WATER?	NO
COPIES OF THIS REPORT ARE TO BE SENT TO		***********		
CHECK				
SUBMITTER (AS ABOVE)				
POLLUTION CONTROL BRANCH, VICTORIA OTHER (PLEASE SPECIFY)				
OTTER (FLEASE SPECIFY)	G Hazelwood			
)				

	ENVIRONMENTAL LABORATORY	11/8/76
	CH LABORATORY REQUISITION-REPOR	LABORATORY USE ONLY
NONMENTAL LABORATORY WATER RESOURCES SERVICE	CITICS (LO IN)	6,031,2AB
SAMPLING SOURCE -	SUBMITTING AGENCY	SAMPLED BY -
Chester fre	id loke	6 T 6 mm
PERMIT OR SITE NUMBER SAMPLE SUBMITTING	START OF SAMPLING FINISH OF SAMP	5557
8 10 19 23 23 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EAR MONTH DAY HOUR MINUTES YEAR MONTH DAY	HOUR MINUTES FEET LOCATION SAMPLE VERT. COMP.
W1	44444	
CHECKALKALINITY:PHENOLPTHALEIN (CaCO3)	OXYGEN: BIOCHEMICAL DEMAND (5 DAY)	RESIDUE:NON FILTERABLE (105° C)
W301 1 1,0,1, 1 1 1 1	1 1,1,5, , , , , , , , , , ,	0,0,81111111
ALKALINITY: TOTAL (CaCO3)	OXYGEN: DISSOLVED (mg/I)	RESIDUE: VOLATILE NONFILTERABLE (550- C)
02 1 1,0,21	0,1,4,,,,	0,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CALCIUM: DISSOLVED (Ca)	pH (units)	SETTLEABLE MATTER
03. 2,5,4	3.10.0.4.0.1.01K	1 0,2,3, 1 1 1 1 1 1 1
CHLORIDE DISSOLVED (CI)	RESIDUE TOTAL (105° C)	SPECIFIC CONDUCTANCE (µmhos/cm)
04. 11,0,41	1 0,0,5, , , , , , , , , ,	31/0-1-10/01/293.
FLUORIDE: DISSOLVED (F)	RESIDUE TOTAL FIXED (550° C)	TURBIDITY (units)
05 1,0,6, , , ,	0,0,6,	0,1,5, , , ,
HARDNESS:TOTAL (CaCO3)	RESIDUE: FILTERABLE (105° C)	
06 1 1,0,7, 1 1 1	B. 10.0.71 7011172.	
00.		
· U		
	(2)	
16		
17		
18		
NOTE - UNLESS OTHERWISE INDICATED A MEASUREMENTS ARE IN MILLIGRAMS PER LIT	ER YEAR MONTH DAY	$\supset C()$
	17.60.8131"	Lista
REMARKS (LABORATORY USE ONLY)		SIGNATURE
off-TOO LOOK IN TRACKIT.	- AESULT REPURTED MA	-X- IF ADD L
- 1		1/9 - 180
SE INDICATIVE OF SITE F	FT TWIE OF SAMPLING-8	3.3 unto UD L

fit

r_Q

ENVIRONMENTAL LABORATORY 11/8/76 BRANCH LABORATORY REQUISITION-REPORT ENVIRONMENTAL LABORATORY WATER RESOURCES SERVICE SAMPLING SOURCE RESULTS OF FIELD TESTS BAROMETRIC PRESSURE (ins. Hg.) OXYGEN DISSOLVED (mg/l) 0,00 FLOW pH (units) 0,0|0,0,41 CHLORINE: RESIDUAL (mg/l) EXTINCTION DEPTH (ft.) DATE REPORTED MONTH NO. OF TEST REMARKS . FIELD PREPARATION OF SAMPLES (REFER TO WATER RESOURCES CHEMISTRY LABORATORY INFORMATION MANUAL.) CHECK / QUANTITY A GENERAL IONS UNFILTERED, UNPRESERVED. 4500 ml B.....B.O.D. SEPARATE BOTTLE; KEPT COOL: AIR EXCLUDED. IS SAMPLE 1250 ml CHLORINATED? 500 IS SAMPLE REMARKS . TAKEN IN SALT OR ESTURINE WATER? COPIES OF THIS REPORT ARE TO BE SENT TO . CHECK SUBMITTER (AS ABOVE) POLLUTION CONTROL BRANCH, VICTORIA

... OTHER (PLEASE SPECIFY)

ENVIRONMENTAL LABORATORY BRANCH LABORATORY REQUISITION-REPORT

11/8/76

BHA	ANCH LABORATORY REQUISITION-REPORT	
ENVIRONMENTAL LABORATORY		1 LABORATORY USE ONLY
MATER RESOURCES SERVICE	Tanks Blanch	1/0031111
SAMPLING SOURCE •	SUBMITTING AGENCY	- QQJI, I-AB
11	+	SAMPLED BY -
1191301	III ICIKC	1 Herchied
PERMIT OR SITE NUMBER SAMPLE SUBMITTING	START OF SAMPLING FINISH OF SAMPLIN	G SAMPLING DEPTH SAMPLE COMP. LOWER DEPTH
	YEAR MONTH DAY HOUR NIMITES YEAR MONTH DAY HO	UR MINUTES FEET LOCATION SAMPLE VERT, COMP. 43 47 48 49
wi	7499941,499111111	
CHECK ALKALINITY: PHENOLPTHALEIN (CaCO3)	OXYGEN:BIOCHEMICAL DEMAND (5 DAY)	RESIDUE:NON FILTERABLE (105° C)
		142 (105°C)
W301 1, 0, 1	1,1,5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0,8111111
	OXYGEN:DISSOLVED (mg/l)	RESIDUE: VOLATILE NONFILTERABLE (550° C)
02 1,0,2, , , , , , ,	1 1 0,1,4, , , , , ,	0,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CALCIUM: DISSOLVED (Ca)	pH (units)	SETTLEABLE MATTER
03 2,5,4, , , , , ,	1, 31/20101K	
CHLORIDE: DISSOLVED (CI)	RESIDUE TOTAL (105°C)	1 0,2,3, 1 1 1 1 1 1
	1	SPECIFIC CONDUCTANCE (µmhos/cm)
04 1 1, 0, 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0,0,5, , , , , , , , , , , ,	10,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
LOGATIDE: DISSOLVED (F)	RESIDUE TOTAL FIXED (550° C)	TURBIDITY (units)
05 1 1,0,6, 1 1 1 1 1	0,0,6,	0.15
HARDNESS:TOTAL (CaCO3)	RESIDUE: FILTERABLE (105° C)	1 0,1,5
06 1 1 0 7 1 1 1 1	1, 81/2-17011179	
06.1111,0,711111111	J 9811 10,0,7,11 10,112,11.	
Or -		
16	<u> </u>	
17		<u> </u>
] [
181		
		£
NOTE - UNLESS OTHERWISE INDICATED	ALL DATE REPORTED	
MEASUREMENTS ARE IN MILLIGRAMS PER LI	TER. 12 YEAR MONTH DAY	11
	[1/10/01/12] RES	NANCE OF THE PROPERTY OF THE P
REMARKS (LABORATORY USE ONLY)		SIGNATURE
PH- TOO LONG IN TRANSIT -	VALUE REPORTED MAY NO	NO. OF TESTS DATA FOLLOWS
4	TEICHTON 1111 (100	NO. OF TESTS DATA FOLLOWS
INDICATIVE OF SITE AT	TIME OF SAMPLING - 8.1	(+ [03] "

HAWORTH LAKE - Elevation:

Date: August 1976

BOTANICAL NAME

Solidago multiradiata Var. Artica (D.C.)

24.

COMMON NAME

Fern Goldenrod

	BOTANICAL NAME	COTTION WATE
1.	Gentiana propinqua Richards	Gentian
2.	Senecio triangularis hook	Groundsel
3.	Arnica mollis hook	Arnica
4.	Pedicularis bracteosa benth	Lousewort
5.	Rubus pedatus sm.	Trailing Rubus
6.	Rubus articus subsp. acaulis focke	Dew Berry
7.	Listera cordata (L.) R. Br.	Twayblade
8.	Dryopteris disjuncta (Ledeb.) Morton	Oak Fern
9.	Moneses uniflora (L.) Gray	One Flowering Wintergreen
10.	Eriophorum angustifolium honk	Cottongrass
11.	Mertensia paniculata G. Don.	Lungwort
12.	Anemone multifida poir	Cut Leaved Anemone
13.	Erigeron perigrinus (pursh)	Green Mountain Daisy
14.	Smilacina stellata (L.) Desf.	Star Flowered Solomon Seal
15.	Zigadenus elegans pursh	Camas
16.	Goodyera repens (L.) R. Br.	Northern Rattlesnake Plantain
17.	Pyrola secunda L.	One Sided Wintergreen
18.	Pyrola asarifolia michx.	Pink Wintergreen
19.	Polygonum viviparum L.	Knotweed
20.	Delphinium glaucum S. Wats	Larkspur
21.	Parnassia fimbriata Koenig.	Grass of Parnassus
22.	Astragulus alpinus L.	Alpine Milk Vetch
23.	Thalictrum occidentale Gray	Meadow Rue

APPENDIX 1 - PLANT LIST

CHESTERFIELD LAKE - Elevation:

Date: August 1976

BOTANICAL NAME

1. Habenaria obtusata (pursh) Richards

2. Pyrola asarifolia michx.

3. Pyrola secunda L.

4. Moneses uniflora (L.) Gray

5. Gentiana propinqua Richards

6. Artimesia michauxiana Bess

7. Melandrium attenuatum (Far) Hara

8. Potentilla fruticosa L.

9. Pedicularis bracteosa benth

10. Aconitum columbianum D.C.

11. Saxifraga oppositifolia L.

12. Saxifraga feruginea Graham

13. Crepis nana Richards

14. Ribes cereum Lindl.

COMMON NAME

Small Northern Bog Orchid

Pink Wintergreen

One Sided Wintergreen

One Flowering Wintergreen

Gentian

Wormwood

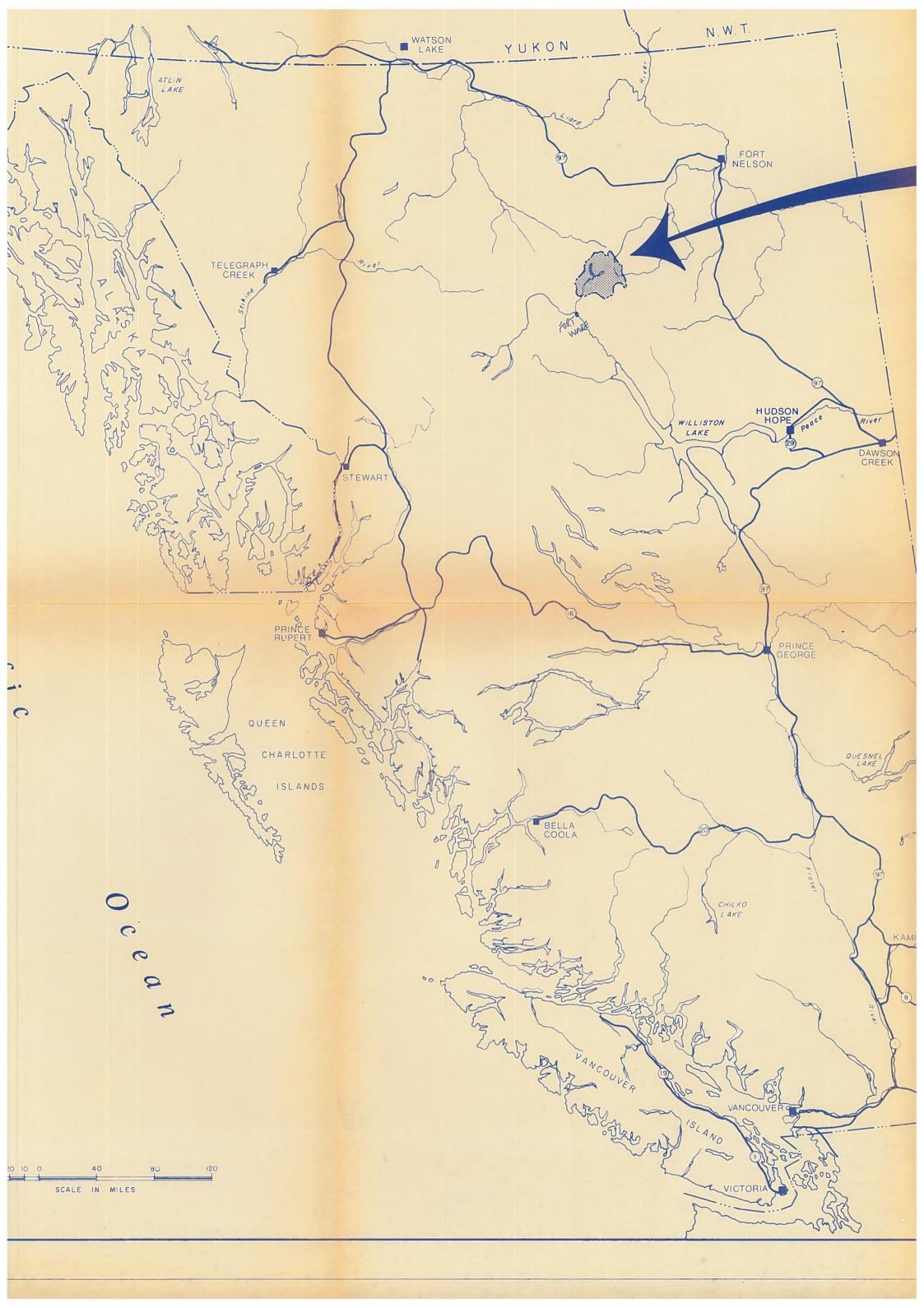
Nodding Pink

Shrubby Cinquefoil

Lousewort

Monkshood

Purple Saxifrage


Coast Saxifrage

Hawks Beard

Wild Currant

De.

OCCASIONAL CARIBOU THIS MAP BY DON PECK BIQ CLOUD MAKER I CAN BEST BE SEEN FROM OLD EAMP SITE MOUNTAIN DRAWN FROM MEMORY TRAIL TO HAWORTH LAKE APPROX. 8 MILES CAN BEST BE SEEN FROM POINTY CAN SAND STRIP ON SOUTH SIDE TRAIL TO FERN LAKE AND KWADACHA RIVER FERN LAKE PPPROL. 12 MILE KWADACHA RIVER APJOROS. 5 M THIS TRAIL WAS SUPPOSED TO BE OUT THIS SPRING BUT I HAVE NEVER 11 CHECKED IT APPROX /2 mile CABIN LARGE POPLAR TRE TBIQ BLAZE TRAIL TO QUINTIN LAKE ON SPRUCE TREE MARKS WHERE OLD BTAZED AT FORKS PPPROX. 12 MILE TO HAWORTH TRAIL ATPROT. 25 MILES LEAVES lAKE of TRAIL TO FORKS OR TRAIL FORKS ON OLD GREEK BE LAKE CHESTERFIELD OLD CAMP AND CRESTER IELD CREEK CACHE LAKE DOWN 4CENIO CHESTERFIELD CREEK TO QUINTIN LAKE Approx. 25 to 30 miles POCRASIONAL CARIBON. IN this PASS AND

