Province of British Columbia Ministry of Environment Inventory and Engineering Branch

CONSTRUCTION OF OBSERVATION WELL WR-261-80

WILLIAMS LAKE AREA

CONTRACT NO. 70

W.S. Hodge Technician Groundwater Hydrology Section

Victoria, B.C. Feb. 1981

TABLE OF CONTENTS

		Page
Tab	le of Contents	ii
Lis	t of Figures	iii
Lis	t of Appendices	iii
1.	Introduction	1
2.	Well Construction and Testing	1
3.	Geology	3
4.	Hydrogeology	4
5.	Water Quality	6
6.	Conclusions	7
7.	References	9

Page

ii

LIST OF FIGURES

Figure		Page
· 1	Well Location Plan	10
2	Site Plan	11
3	Well Design and Geology	12
-4	Bedrock Geology	13

LIST OF APPENDICES

Appendix A	Well Log, Contract Costs, Pump Tests Data, Water Level Recorder Installation Specifications, Application Form
Appendix B	Water Quality Lab Reports, Schoeller Plots, Water Level Recorder Graphs showing earthquake response

CONSTRUCTION OF OBSERVATION WELL WR 261-80 WILLIAMS LAKE AREA Contract No. 70

1. INTRODUCTION

One 203 mm diameter observation well was drilled and completed to a depth of 79.2 metres (260 feet) off Dog Creek Road south of Williams Lake (Figure 1). The well was drilled by Manville Drillers of Williams Lake and tested by Ken Branscombe of Hillside Pumps, Williams Lake in September 1980. Total contract costs for well construction and testing were \$8,092.00.

The area around Dog Creek Road was chosen as a high priority area for establishment of an observation well on the recommendations of Choy (1978). Groundwater exploration in this area had been previously recommended by our Ministry (Hodge, 1976) in a report to the Land Management Branch at Williams Lake.

As shown in Figure 1 well density along Dog Creek Road is very high with residents relying entirely on the local groundwater reserves. Figure 2 shows the well location in greater detail.

Construction of an observation well was required to monitor water level fluctuation and long term effects of groundwater extraction in the area. An automatic water level recorder and protective housing were installed on the well head. This equipment should remain in place for a minimum of 5 years.

2. WELL CONSTRUCTION AND TESTING

Drilling was carried out to a depth of 79.2 metres using an air rotary drill rig (Speedstar) with casing hammer. To allow for surface grouting, a 4.9 metre length of temporary casing was installed. This

. . . 2

casing was later removed and the annular space around the 203 mm diameter casing was grouted. This 203 mm casing extends from ground surface to a depth of 61 metres through unconsolidated material comprised of brown and blue clay with gravel (Figure 3). A drilling foam was pumped into the hole while drilling through both the overburden and bedrock. The foam was used as a precaution against unstable or caving conditions. At times drilling 12.2 metres open hole ahead of the casing was possible in overburden. Although foam aided in keeping the hole open, materials were quite firm.

The major source of water is derived from bedrock. This source is likely supplemented from the water-bearing gravels above. Examination of the drill returns revealed the bedrock to be a highly fractured tertiary sandstone. Drilling action showed the sandstone to be firm but grading from soft to hard. The soft layering encountered appears to be compacted sand between layers of lithified bedrock.

The well was developed by surging and pumping with compressed air for a period of 1.5 hours. The water had cleared in this time and was visibly sand free.

The well was pumped with a 5 h.p. - 13 stage Jacuzzi submersible pump. The first test on September 3rd was terminated after only 70 minutes of pumping because of a pump failure. The second test on September 5th was completed without interruption and the well was pumped at a rate of between 4.13 litres/second and 4.54 litres/second (65.4 and 72 USgpm for a period of 560 minutes (9.3 hours). The pump intake was set at 42.7 metres below the top of the well casing during this test and the static water level was 25.5 metres. Test data is shown in Appendix A. A drawdown of 0.83 metres occurred over the test period representing approximately 5 percent of the total available drawdown. Using these figures and assuming stabilization of the pumping water level occurred during the test, a maximum specific capacity of 5.47 litres/second/metre of drawdown (26.5 USgpm/ft. of drawdown) can be calculated. If the lower

. . . 3

- 2 -

pumping rate of 4.13 litres/second is used, a specific capacity of 4.92 litres/second/metre of drawdown is derived. This figure may be more realistic considering stabilization did not occur when the well was pumped at the higher rate of 4.5 litres/second (72 USgpm). <u>On</u> <u>the basis of these calculations</u> the well should theoretically be capable of sustaining a yield of 101 litres/second or 1600 USgpm if the pump were lowered to 61 metres, and the maximum available drawdown (at the time of testing) were utilized.

- 3 -

A long term pump test of minimum duration of 72 hours at higher pumping rates would have to be conducted in order to define more clearly the full capabilities of this well.

Water level recovery was rapid. The initial recovery reading 30 seconds after the pump was stopped was recorded as 0.13 metres (0.43 feet) <u>above</u> the original static water level. This excellent recovery response was due in part to the well construction (i.e. the well was completed open hole in the bedrock and thus no restrictions such as slotted casing were present). This response also indicates the aquifer is subject to recharge. A water level of 0.02 metres (0.07 feet) below the original static water level was recorded within one hour of stopping the pump. An automatic water level recorder was installed on the well head at this point and the remaining recovery was recorded.

3. GEOLOGY

Surficial and bedrock geology in the Williams Lake area has been mapped by Tipper (1959). Bedrock geology has been shown in Figure 4 of the text.

The glacial history in the Williams Lake valley is complex and involved at least two periods of glaciation. Each advance appears to have occurred in a westerly direction towards the Fraser River. According to Callan (1968) the first advance was more pronounced than the last, eroding

. . . 4

the Williams Lake valley to at least an elevation of 1450 feet and depositing a thick sequence of sands, silts and gravels as it receded. The second advance was less severe and did not erode the valley below an elevation of 1800 feet.

- 4 -

Large meltwater or outwash channels of recent alluvium materials cover most of the Williams Lake valley and Chimney Creek areas with some pitted terrain to the north of Williams Lake. The alluvium consists of mainly till, sand, gravel and silt.

The study area is primarily underlain by a thin drift cover overlying bedrock. Geological logs of wells drilled within the immediate study area indicate bedrock varies between surface and 76 metres. The bedrock geology map shown in Figure 3 indicates surficial deposits of till, gravel, sand, clay and silt bounded by tertiary volcanic bedrock to the east and west (Figure 3). Surficial deposits were found to be 58.5 metres thick (192 feet) at the observation well drill site.

Recent hydrographs obtained from the monitoring of this observation well have shown water level movement in the well caused by earthquakes (Appendix B). A spike, 0.038 metres in length appeared at approximately 9:00 a.m., December 17th on the hydrograph shown in Appendix B. This spike was caused from the December 17th earthquake (9:20 a.m.) which originated approximately 200 kilometres west of Estevan Point on Vancouver Island.

Another spike, 0.072 metres in length occurred November 8th and this is believed to be caused from the southern Italy earthquake.

4. HYDROGEOLOGY

The Groundwater section has approximately 180 records of wells drilled along Dog Creek Road (Figure 1). The Dog Creek Road area was reviewed as part of a groundwater study done in July 1976. At that

. . . 5

time the average depth of wells drilled along Dog Creek Road was determined at 31.4 metres (103 feet). Well depths ranged from shallow dug wells and drilled wells up to 94.5 metres (310 feet). Wells drilled recently are generally deeper than 31.4 metres. Through discussions with local residents and comparisons of dated and recent water levels in the area it is apparent that water levels may be declining. This may be due to the numerous wells being constructed in this area causing an ever increasing demand on the groundwater resource.

- 5 -

Until the construction of the observation well, the greatest recorded yield on Dog Creek Road was the Kendall Acres Mobile Home Park well (Figure 1). This well is 27 metres deep (88 feet) and reports a specific capacity of 3.0 litres/second/metre of drawdown (19.2 USgpm/ft.). The recommended pumping rate of this well was set conservatively at 50 USgpm by the driller. The majority of wells along Dog Creek Road are, however, capable of yielding 0.06 to 0.25 litres/second (1 to 4 USgpm). The major aquifer throughout the Dog Creek Road area appears to be a tertiary sandstone. Groundwater recharge to this area is likely supplied from higher elevations to the south. Groundwater discharge has been noted downslope near Shaw Auto by local residents. As mentioned in the 1976 report, glaciofluvial deposits surround Bond Lake. These deposits are free draining possibly supplying recharge to areas downslope to the north (observation well site).

Bond Lake is located on a knoll approximately 76 metres higher in elevation than the drill site and is located 1200 metres southwest of the drill site. Aerial photographs indicate Bond Lake could be a contributing source of recharge to this aquifer.

5. WATER QUALITY

Water samples were collected and submitted for complete chemical analysis at the beginning and the completion of the pump test. The

. . 6

analyses indicate the groundwater is hard (547 and 567 mg/ ℓ) with corresponding pH values of 8.0, and moderately mineralized (T.D.S. 696 and 700 mg/ ℓ). These results indicate the presence of primarily a calcium-magnesium bicarbonate type groundwater. The total iron content recorded at the start of pumping was 1.3 mg/ ℓ . After 7 hours of pumping the dissolved iron content was reduced substantially and recorded as 0.1 mg/ ℓ . No iron was recorded in suspension at the end of pumping.

Although below the recommended standard of 10 mg/ ℓ , nitrite and nitrate levels are quite high (6.6 mg/ ℓ). Levels as high as this could be an indication that the groundwater is receiving some organic constituents somewhere along its flow path. Hydrograph records have shown this aquifer is responsive to the effects of local pumping and earthquakes indicating the aquifer has a high transmissivity and good permeability. Although desirable in any aquifer these features also make an aquifer susceptible for movement of pollutants. It should be noted, however, that although a nitrite and nitrate level of 6.6 mg/ is above the normal amcunts of these elements found in groundwater, these levels are still <u>below</u> the recommended standard and may be of little concern.

A water sample was also collected from the Kendall Acres Mobile Home Park located approximately 250 metres east of the observation well. This sample was submitted for complete chemical analysis. The analyses results for this well and the observation well were plotted using the Schoeller method (Appendix B) and the groundwaters were found to be different types and probably not of the same flow system. The Kendall Acres well is (26.8 metres) deep and the major water bearing zone is located between 11 metres and 25.3 metres. The water quality of this well is considerably lower in hardness (218 mg/ ℓ) and less mineralized (484 mg/ ℓ) than the water sampled at the observation well site.

. . . 7

- 6 -

6. CONCLUSIONS AND RECOMMENDATIONS

- The aquifer encountered is a fractured rock, probably tertiary sandstone.

- 7 -

- Recharge to this aquifer likely occurs in the south. Geologic mapping and aerial photography indicate that Bond Lake may be hydraulically connected to this aquifer.
- This aquifer appears to have the potential for supporting a high capacity well or wells. The pump test data has indicated a properly designed and constructed well within this aquifer could theoretically sustain a yield of several hundred gallons per minute.
- A <u>further</u> long term pump test of a minimum duration of 72 hours is necessary, however, before any definite or final conclusions can be made regarding the capabilities or characteristics of this aquifer. Although recovery data suggests this aquifer is extensive, long term pumping could reveal hydraulic boundaries not evident from short duration tests. Long term, high rate pumping tests are not within the scope of the observation well establishment program under which the well was constructed.
- Development of this aquifer may now be an important consideration when concerned with the long term planning of areas along Dog Creek Road. The option of pumping water to this area from Williams Lake could be dismissed pending further testing of this aquifer.
- Water quality is acceptable and meets the standards set by the Canadian Drinking Water Quality Guidelines for all parameters tested. Nitrogen with respect to nitrite and nitrate was high, but below the recommended standard.
- This well should be sampled for complete chemical analysis at least

. . . 8

twice during its monitoring period - once during the late summer months when water levels are historically at their lowest and once during the spring. Testing for iron and nitrogen levels should be of particular importance.

W. Stodge

١

W.S. Hodge Technician Groundwater Hydrology Section

WSH/dma

APPENDIX "A"

Well Log, Contract Costs, Pump Test Data, Water Level Recorder Installation Specifications,

Application Form

Williams Lake Observation Well #261

(Note-Fish & Wildlife shed to the left and Dog Creek road in the background)

ς

Williams Lake Observation Well WR 261-80

Pump Test - Sept. 5, 1980

5 HP Submersible pump installed and pumping about to begin.

Discharge of 72 USgpm. . •

APPENDIX "A"

Well Log, Contract Costs, Pump Test Data, Water Level Recorder Installation Specifications,

Application Form

	and an and the second	n na sea an s
CBS. WELL #261		Z WELL NO.
WATER WELL RECORD DEPT. OF ENVIRONMENT, WATER RESOURCES SERVICE, WATER INVESTIGATIONS BRANCH VICTORIA, I	BRITISH COLUMBIA	
LEGAL DESCRIPTION: LOT A SEC. TP. R. DL. 9849 LAND DISTRICT CARBOD	PLAN_0649	
DESCRIPTIVE LOCATION OFF DOC CREEK ROAD SE. OF DENNY BID, WILLIAMS LAKE LICENCE	NO DATE	<u>zz x 14 y 4 no.</u>
OWNER'S NAME ININISTRY OF ENVIRONMENT ADDRESS TOS UNDENTED - VICTORIA DRILLERS NAME MANVILLE DRULING ADDRESS WILLIAMS MAKE DATE	E COMPLETED SEPT	NAT. TOPO. SHEET NO.
DEPTH 26C' ELEVATION DESTIMATED CASING DIAM 8" LENGTH 200'	Sept 5/80	ODUCTION TEST SUMMARY
SCREEN DI SIZE LENGTH	TEST BY HILLSIDE	DURATION OF TEST 9:5 12:5
PERFORATIONS FROM	WATER LEVEL AT COM	* 100 SPECIFIC CAPACITY = 25 USP
GRAVEL PACK C LENGTH DIAM SIZE GRAVEL, ETC	PERMEABILITY	STORAGE COEFF
DISTANCE TO WATER ARTESIAN PRESSURE ARTESIAN PRESSURE FROM _ TOP CASING DMEASURED ELEVATION ARTESIAN PRESSURE DATE OF WATER LEVEL MEASUREMENT SEPT 5/00 WATER USE OBSECUATION WELL	RECOMMENDED PUMPI RECOMMENDED PUMP	NG RATE
CHEMISTRY	FROM TO	LITHOLOGY DESCRIPTION
TEST BY DATE DATE DATE	003	G. W/LITTLE CLAY LINDER Y SOURY ANGULAR C SUB-
TOTAL DISSOLVED SOLIDS	RO	CULAR S & C GRAINS SOME
TOTAL ALKALINITY (CoCO3)mg/I PHEN ALKALINITY (Co CO3)mg/I MANGANESE(Mn)mg/I COLOUR ODOUR TURBIDITY	43 45 BL	DR., HARD
	45 52 S	F. E. F BROKEN ROCK
ANIONS ING/I epm <u>CATIONS</u> mg/I epm CARBONATE (CO ₃)		acs., Gary
BICARBONATE (HCO3) MAGNESIUM (Mg) SULPHATE (SO4) SODIUM (Ng)		POLUN CLAY MLE CLAY BINDER, LIGHTER TAN
CHLORIDE (CI) POTASSIUM (K) NO2+NO3 (NITROGEN) IRON(DISSOLVED)	6	LOUR, TILL OR CLAY ROMEN ROCK BLACK GRAVEL
• TKN. (NITROGEN)	176 178 B	CONEN CLAY
• TKN • TOTAL KJELDAHL NITROGEN CHEMISTRY SITE NO.	192 204 Dr.	UP SIE COULD BE SIC
NO2 - NITRITE NO3 · NITRATE	IN IN	BERCOCK FRACTURES) SANDY
TEST BY W. HODEE DATE SEPT 5/60 EQUIPMENT USED HACH TEST BY W. HODEE DATE SEPT 5/60 EQUIPMENT USED HACH	<i>P</i>	WID I CLAY, RE SAWN COLOU UKISH WATER
Сслід. 1000 Iron .8 = 1.1 Лек 632		SAND & CLAY
CONTENTS OF FOLDER		AND BLOKEN POCK AND WHITE AY SOME DIRTY SAND STOLL
SIEVE ANALYSIS GEOPHYSICAL LOGS REPORT		ag pock & lanfes of
OTHER ADAN SATTANS		OWN CLAY.
SOURCE3 OF INFORMATION		· · · · · · · · · · · · · · · · · · ·

.

•

••

. M. 1.

1 1

.

MANVILLE DRILLING (B.C.) CO. LTD. Nº 125 R.R. 2, BOX 25, COMMODORE CRESCENT, WILLIAMS LAKE, B.C. V2G 2P2 TELEPHONES: 989-4301 - 392-7562 ept 2 19 80 NACCOUNT WITH _____Ministry of conciloment V8V 1X4 ADDRESS Parliament Buildings B.C. 2% Carrying Charge per month on overdue accounts, including interest and payment in arrea Re- water used construction contract no. 70 Williams Lake, B.C. 645 00 17 - 12 sunface casing@ 38.00 per ft 4941 00 183 - 8 dricking & casing in overhunden @ 27.00 per ft 900 00 8" drilling in bedrock boft @ 15.00 per ft 17- 8" ouerlap casing 0, 2.00 20400 130 00 - 8 drive shoe 3 hrs. developinga comenting @ 150.00por hr. 450 00 50 00 well 7320 00 SUB-TOTAL 280 00 Mebilijation Remobilization of pumpand 456 00 12 hours pump hour recovery 35 TOTAL 8.092 TERMS: Upon default of any payment the entire balance becomes due and payable and a Mechanics Lein may be filed. In the event of non payment of the said total charge, the owner authorizes this company to take whatever legal steps may be deemed necessary to collect and agrees to pay all collection costs. ACCEPTED BY MISIFolge Serie (EC 191 Borkett

APPEIDIX

"CONSTANT RATE" PURPING THEY DATA FROM WELL NO. 261

	TE	ST #1			Date	
Tiro	Time (t) since start of pumping in mins.	Depth to water in well from top. of casing in feet	Drawdown in well in fect (static =)	Height of water in tube on orifice pipe in inches	U.S.gals. per min. discharge from woll	•
50 AM	0	84.12				5HP Jacuzzi
	.5	87.27		1		(13 Stage)
	1	*	_1		•	
	1.5	*			*	Soil Test M-Scope
	2	*	1			Not Working
<u> </u>	2.5	*]			Correctly-Replaced
	3 ·	*				W/Powers
	3.5	*				
	4 .	85.68				
	1 4.5	86.38			· · · · · · · · · · · · · · · · · · ·	
	5	86.30			50.4-54	
	6	86.31				
	7	86.25				
	8	86.28				
	9	86.28				
	10	86.27				
	12 .	86.29			}	
		86.43				
•	16	86.32				
<u></u>	18	86.31				
	20	86.33			50.4-54	
	25	85.81		<u> </u>		
	1 30	85.74				Hath-Test @
	35	85.73				11:00 AM
· · · · · · · · · · · · · · · · · · ·	40	85.73				Temp-7.6
	45	85.72				Cond-1000 PM 7.8
				<u> </u>		Iron 1.1
	50	85.71				Hardness 614
11.00 AM	60 <i>.</i> 70	84.69			* Pump Acti	ing up-Flow
11:00 AM 11:00 AM	73	84.46			1	Greatly.
						1-oump-removed-for repair
				i		
•						
			•			
				·····		

APPEIDIX

RECOVERY RUNDINGS IN WELL NO. 261 AFTER "CONSTANT RATE" PURPING TEST #1

***62

Time Time				• •	•	Date	September 12, 1980
11:03 M 0 84.46 Missed 1 64.12 Missed 2 84.18	•	since start of pumping	since Pumping stopped	Value of	Dopth to water in well from top of casing	drawdown in well in feet (static	•
.5 - Missed 1 84.12 - 2 84.18 - 3 84.22 1 4 84.15 - 5 84.15 - 6 84.12 Initial S.M.L. 11;15 6 84.12 Initial S.M.L. 11;15 6 84.12 Initial S.M.L. 11;15 7 0 84.12 Initial S.M.L. 11;15 10 1 1 1 11;15 10 1 1 1 11;15 10 1 1 1 <t< td=""><td>11.02 44</td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>	11.02 44				1		
1 84.12 11990 2 84.13 1 3 84.22 1 4 84.15 1 5 84.15 1 6 84.12 1 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 84.12 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 10 10 11:13 #1 <td>11:03 //1</td> <td>·</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>* Missed</td>	11:03 //1	·				<u> </u>	* Missed
1,5 84.23 2 84.18 3 84.22 4 84.15 5 84.15 6 84.12 11:13 Al. 10 84.12 Initial S.M.L. 9 10 84.12 Initial S.M.L. 9 10 84.12 Initial S.M.L. 9 10 10 84.12 11:13 Al. 10 1				<u> </u>			1113300
2 84.18 3 84.22 4 84.15 5 84.15 6 84.12 11:13 10 84.12 Initial S.M.L. 9 9 11:13 10 84.12 Initial S.M.L. 9 10 84.12 Initial S.M.L. 9 10 11:13 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11:10 10 10:11 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
3 84.22 1 4 84.15 1 5 84.15 1 6 84.12 Initial S.W.L. Pump. removed to repair 2 11:13 4 10 84.12 Initial S.W.L. Pump. removed to repair 2 1 10 84.12 11:13 10 84.12 11:13 10 84.12 11:13 10 84.12 11:13 10 84.12 11:13 10 84.12 11:13 10 84.12 11:13 10 84.12 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:13 10 10 11:14 10	·	•					
4 84.15 5 84.15 6 84.12 11:13 c* 10 84.12 Initial S.W.L. Pump. removed to repair 1 10 1 10 11:13 c* 10 <		·				1	1
6 84.12 Initial S.W.L. 11:13 A1. 10 84.12 Initial S.W.L. 10 84.12 Pump. removed to repair 11:13 A1. 10 84.12 Initial S.W.L. 11:13 A1. 10 84.12 Initial S.W.L. 11:13 A1. 10 84.12 Pump. removed to repair 11:13 A1. 10 10 10 11:13 A1. 10 10 10 <tr< td=""><td></td><td></td><td>4</td><td>1</td><td>84.15</td><td></td><td></td></tr<>			4	1	84.15		
11:13 10 84.12 Initial S.W.L. Pump. removed to repair - - - - - - - - - - - -	;	. •	5	· ·	84.15		
Pump. removed to repair			6		84.12		
	11:13 A	1.	10		84.12		
	·	•			. :	:	Pump removed to repair
		•					
	• 1						
	· · · i						
	· .		_			. 3.	•
					- i - ·		
			·		· · ·		
	· .	•					
		· ·			•	• •	
	· · ·				·		
						<u> </u>	
	· · ·	l	<u>!</u>				
						·	
		 			<u></u>		
	·	! <u>.</u>					
		ļ	<u> </u>				
		<u> </u>	<u> </u>	·			
			<u> </u>				
							······································
	• -••		¹				

Pago

APPENDIX

"CONSTANT NATE" PURPING TEST DATA FROM WELL NO. 261

•					Date	September 11, 1980
0	TEST #	2	·			
Tiro	Time (t) since start of pumping in mins.	Depth to water in wall from top of casing in feet	Drawdown in well in feet (static =83.64)	Height of water in tube on orifice pipe in inches	U.S.gals. permin. discharge from well	Pump Set @ 140' Below Tob Casing
3:25 AM	0	83.64	0			Observer-Hodge
	.5	•,	•			Missed Reading
]	85.30	1.66	· · ·	· ·	
	1.5	85.30	1.66			
	2	85.30	1.66	·		Powers M-Scope
	, 2.5	85.31	1.67		ļ	Used Throughout
	3.	85.31	1.67			Test .
	3.5	85.31	1.67		<u></u>	· · · · · · · · · · · · · · · · · · ·
	4 .	85.33	1.69			
	4.5	85.35	1.71			
	5	85.36	72			
	6	85.69	· 2.05			
•	77	85.68	2.04		1	
	8	85.62	1,98			
	9	85.55	1.91		•	
	10	85.58	1.94		65.4	
	12	85.61	1.91		(3.96 2/5)	Water Sample
	14	85.66	2.02		-	Collected For
	1 16	85.67	2.03			Complete Analysis
<u> </u>	18	85.67	2.03			0 12 min into test
	20	85.68	2.04	1	65.4	
	25	86.22	2.50			
•	30	85.82	2.18			
•	35	85.86	2.22	<u> </u>		
	40	85.87	2.23	5	65.4	Observer Change
	45	85.88	2.24			@ 70 min-Wilkinson
	50	85.88	2.24			
	55 .	85.88	.2.24			Hach Test @
:25 AM	60	85.88	2.24	<u> </u>		11:15 AM
·	70	85.87	2.23		72	Iron81.1
	80	85.84	2.20	, , .	(4.37 \$45	Cond 1000
·····	90	85.92	2.28			PH - 7.8
	100	85.94	2.30	o i	65.4	Hardness - 649.8
· · ·	• 120	85.98	2.34	9		Temp - 7.6
·	140	86.01	2.3	7		Alkalinity - 632
		a a 🖌 🗛 🖓 👘	• • • •			

140

APPENDIX

"CONSTANT RATE" PURCING TEST DATA FROM WELL NO.___

		•			Date	مه ور های منطق بردی برد همیروماند. می هریکی که ها، میکومین
Timo	Time (l)	Depth to	Draudown	Meight of	U.S.gals.	•
	since	water in	in well	water in	per hin.	
	start of	well	in feet	tube on	discharge	
	pumping in mins.	from top.	(static '=)	orifice pipe	from well	•
	TH PERIO	in feet		in inches		
•	160	86.00	2.36			
	180	86.08	2.44			
11.45	200	86.11	2.47			
	230	86.12	2.48	65.4 (3.96 \$/5)		
	260	86.08	2.44	(3.96 \$ 5)		
F.	290	86.13	.2.49			·
	320 .	86.18	2.54			Temp-7,6 °C
	350	86.21	2.57	72		Cond-1010
	380	86.22	2.58	72 (4.37 \$\5)		*
	400*					Pump Acting Up
	410	86.33	2.69			Flow Stopped Non
	440	86.33	2.69			Pumping Level
{·	480	86.38	2.74	72		Returned To 83.85
	500	86.38	2.74	(4.37 L/5)		Within 1/2 min.
	540 -	86.36	2.72		· • • · · · · · · · · · · · · · · · · ·	OK after 3 min
5:45 PM	560	86.36	2.72	Pump Shut	¢ff	
	. 1					
	· .		Note	Water Sampl	e Collected	for
			con	nplete analy	sis @ 500 m	ip
	· · · · · · · · · · · · · · · · · · ·		int	to test.		
.				4		
•		1		· ·		
					1	
	:					
				_ <u></u>		
·	· · · ·	·		!		
	• • • • • • • • • • • • • • • • • • •		<u></u>			
			1	<u> </u> .		
						•
			•••••••••••••••••••••••••••••••••••••••			
	· · · · · · · · · · · · · · · · · · ·					
				·		
				,	1	

APPEIDIX

RECOVERY READINGS IN MELL NO. 261 AFTER "CONSTANT RATE" PURPING TEST #2

1466

4

ļ

٩.

	·		•		Date	
Timo	Time (t) since start of pumping	Time (t) since Pumping stopped		Dopth to water in well from top	Residual drawdown in well in feet	•
•	in mins.	in mins.		of casing in fect	(static , = 83.64)	
			•			
5:45 PM	560	. 0.	·	86.36	2.57	
	560.5	1.5	1120	·83.21* [*] 83.46	+ 0.43	*0.43' above initial SWL
	561	1.5	561	83.87	0.18 0.23	
	561.5	2	374.3 281	83.87	0.23	
	562	2.5	225	83.79	0.15	
	563	3	218	83.81	0.17	
; 	 563.5	3.5	161	83.85	0.2/	i •
	564	4	141	83.85	0,21	
	* 564.5	4.5	125.4	83.83	0.19	
	565	5	1 1/3	83.84	0.20	
	566	6	94.3	83.83	0.19	
	567 .	7	81.	83.81	0.17	•
·	563	8	71	83.71	-0.07	
		9	63.2	83.95	0.31	· · · ·
	569	10		83.94	+	
-:	570	10	57	83.97	0.30	
	572		47.6	_!	0.33	
	574	14	41	83.80	0.16	
	576		36		0.17	
<u> </u>	578	18.	32.1	83.79 83.76	0.15	
	580	•	29.		0.12	
·	585	25	23.4		0.10	
·	590	30	19.6	83.74	. 0.10	
	\$95	35	17	83.75	0.11	
	600	40	15	83.72	0.08	3
	610	50	12.2		0.0	
5:45 PM	620	60	10.3	83.71	0.0	
	· · · · · · · · · · · · · · · · · · ·					recorder installed
		<u> </u>				to record remainder
		}				of recovery
				- 1		-
i	<u></u>	- <u> </u>			·	
!						
i		!				-
		-!				

	AIC & 1 CYCLER X 70 DIVISICNS.		
	4 ω ς 		
		Resid	
			RUVENUS RUTE 685 15A
$\sum_{i=1}^{n-1} \sum_{i=1}^{n-1} $			
	$= \Delta_{s} = 0.15$		
N.2			
S . 3	/= z/+ (? (re?).	120560 45	opd / fet
La			
4.			
Xes			
/	10 - Ration 7	1, 1, 100	

মিত্র্যানের ত দার্ঘারা বির্তালাটাঃ Mirsig I Durburger 2794 MEMORANDUM

To: D. Lowen Geological Engineer Groundwater Hydrology Section Date: September 11, 1980

. 2

File: 0183613-8-261

Re: Williams Lake (Dog Creek Road) Observation Well WR261-80, Site 1401769

6

6

Background Information:

It was recommended in 1977 that the Williams Lake area be included in the proposal for expansion of the observation well network (Choy, 1977). An attempt to locate a suitable abandoned drilled well along Dog Creek Road was made in June 1978 but proved unsuccessful. This area was designated as a high priority area for establishment of an observation well because of the very high density of water wells throughout this area. People in this area rely entirely on the groundwater resource for their domestic water supplies. Yields have been reported as great as 454 litres/minute (100 gpm) along Dog Creek Road. The purpose of this well was to monitor groundwater extraction in the area and determine if mining of the aquifer could be taking place. Numerous wells are constructed every year along Dog Creek Road with many drilled wells supplying water to 3 or more houses. Groundwater withdrawal around the drill site is considerable. An elementary school, neighbourhood pub, 2 trailer courts and numerous houses all exist within a 300 metre radius of the observation well.

On August 1, 1980, Contract No. 70, drilling and construction of an observation well at Williams Lake was awarded to Manville Drilling of Williams Lake. Orilling was started on August 18, 1980 and completed on August 20, 1980 using an air rotary drill rig. The well is completed in fractured rock to a depth of 79.2 metres (note attached well log for complete details).

Well Location:

The well is located approximately 3.2 kilometres south of Highway 20 (Chilcotin Highway) along Dog Creek Road. The drilling site was allocated to our Section by the Ministry of Transportation and Highways in Williams Lake. The application for permission to construct works within Crown Lands has been completed and is attached to this memorandum. Mr. Jim Raven (Technician) and Mr. Stan Poloposki (District Highway Manager) assisted our staff in locating a suitable drilling site. Mr. Fred A. Baxter (Land Manager) of Ministry of Lands, Parks and Housing in Williams Lake assisted in the preliminary "footwork" involved. Mr. Zeke Withler (Regional Manager) of Fish and Wildlife was contacted and informed of the location of the observation well (Mr. Withler is responsible for the storage shed beside the well).

Monitoring Arrangement

As the application form stipulates water levels will be monitored for a minimum of 5 years.

Legal Location is:

Cariboo Land District, Plan 8645, District Lot 9849, Lot A Coordinates 22-X14-Y4 NTS 93-B-1

é . •

Well Drilling Specifications:

Depth	- 79.2 metres
Diameter	- 203 mm
Aquifer	- rock
Screen location	- n/a
Well yield	- *(Note pumping test discussion)
Well drilled by	- Manville Drilling
Static Water Level	- 25.49 ^m (83.64 feet) Sept. 5, 1980
Drilling method	- air rotary
[:illing time	approx. 20 hours (Aug. 18-19th)
Drilling cost	- \$8,092.00

Pumping Test:

The pumping test was initially started on September 3rd at a pumping rate of between 191 and 205 litres/minute (42 and 45 Igpm or 54 USgpm) with a 5 hp Jacuzzi pump set at a depth of 60 metres below the top of casing. This test had to be discontinued however, after a period of 70 minutes due to a pump failure. Another pump was purchased from the Jacuzzi office in Calgary and the test was continued September 5th. This time the pump was set at 42.7 metres below the top of casing resulting in an increased pumping rate of between 248 and 273 litres/minute (54.5 and 60 Igpm or 72 USgpm). This test was continued for a period of 9.5 hours resulting in a drawdown of 0.83 metres (2.72 feet). This well had approximately 33.5 metres (110 feet) of available drawdown at the time of testing. Recharge to the well is most likely occurring from higher elevations to the south (Bond Lake, Chimney Creek regions). This theory is discussed in greater detail in the report to follow this memorandum.

Equipment on Site:

Metric Recorder - RG-46 (1:2 Gears metric) Weight Drive Clock - CG 11 152 mm diameter threaded nipple welded to casing Weight Drive Pipe 0.5 kg Clock Weight 340 gr. of Counterweight 1 - 127 mm diameter Float 1 - 10 metre grad. tape 21.3 metres of braided nylon line 1 - recorder stand w/GE culley 1 - year supply of metric recorder charts (F-4) stamped "on" and "off" 2 - cable clips

. 3

1 - viro lock

The recorder was painted dark green upon completion. Reference to ground level has been shown with an arrow on the well casing.

.

Observer Name and Particulars:

Harris Wilkinson 134 Mayfield Avenue Williams Lake, B.C. **392-5**286 SI 705-126-258

Mr. Wilkinson was chosen as the observer because he presently services the Scout Island Observation Well (WR 85-69) and has proven to be an excellent observer.

Ground Level Datum:

Casing stick-up from tape pointer to ground level - 1.22 metres (4.00 feet)

Distance to water level from tape pointer - 25.80 metres (84.86 feet)

Tape reading - 4.106 metres

Correction factor to be applied to tape reading is therefore +20.534 metres.

References

Choy, H.H. (1978) Preliminary preposal and cost estimates for Observation Well Network Program 1978. File 0183613-B Groundwater Section, Hydrology Division, Water Investigations Branch, Ministry of the Environment.

W. S. Hodge

W.S. Hodge, Technician Groundwater Hydrology Section

WSH/jm

0.

H. 20 (Revised May 1979)-0

6.

THE GOVERNMENT OF THE PROVINCE OF BRITISH COLUMBIA

MINISTRY OF TRANSPORTATION, COMMUNICATIONS AND HIGHWAYS (HIGHWAYS)

Application for Permission to Construct Works within Crown Lands

1 (We) hereby apply for permission to construct, use, and maintain works within the limits of Crown lands under the jurisdiction of the Minister of Transportation, Communications and Highways (Highways), British Columbia, in accordance with the particulars, plans,^a and specifications submitted herewith in *triplicate*. It is understood that the completion of this form constitutes an application only and that the works applied for will not be commenced until a covering permit has been issued. The proposed works consist of and are described as follows:

The drilling and completion of a six-inch diameter well near Williams
Lake on Lot A, Plan 8645, D.L. 9849; the location of which is shown on the
attached plan. After the completion of well construction, numping test and
water quality sampling, it is intended to install an automatic water level
record to monitor the groundwater level for a minimum period of five (5)
years. The recorder will be housed by a metal box (18" X 24" X 24") which
is connected to a casing projecting approximately five feet above the
ground surface. Servicing and maintenance of the recorder will be handled

by Ministry of Environment staff or their representatives.

Have the necessary plans for approval been filed with the proper authorities? (See Note 2 on back)_______ Name of applicant_____Inventory and Engineering Branch, Ministry of Environment

P.O. address Parliament Buildings, Victoria, B.C. V8V 1X5

(Signed)____

(Applicant.)

(Date).....

To Local Office, Ministry of Transportation, Communications and Highways (Highways)

. See note No. 1 on back.

(OVER)

APPENDIX "B"

Water Quality Lab Reports, Schoeller Plots, Water Level Recorder Graphs Showing Earthquake Response

	WATER QU	ALITY REPOR	T FOR SAMP	LE 014539W	
		INVENTORY &			
		777 BROUGHT Victoria BC	ON ST, 4FL	R•	
, a ay yound kina fe	FOR SITE: 1401	-	ALL ACRES	WILLIAMS LK	
	SAMPLING DATE (
	SAMPLE TYPE: FI	RESH WATER			
مر برای در در این	SAMPLING DEPTH SAMPLED BY: IN	VENT. & ENG	NRG BR., M	OE	
	DATE RECEIVED				
040101	PH	8.3 REL UNIT	0071701	RESIFILT, 1050	484, MG/L
110101	SPECIFIC CONDUC	798,	0300101	COMP, DIL, COND,	883.
	· · · · · · · · · · · · · · · · · · ·	UMHO/CM			UMHO/CM
010101	ALKALINITY:PHNL	L 0,5 MG/L	1020101	ALKALINITY:TOT	385. MG7L
041702	CHLORIDE:DISSOL	5,7* Mg/L	1070002	HARDNES, TICACO3	218.* MG/L
091703	NITROGN:NO2 NO3	0,38 MG/L	1130101	NITROGN:KJELDAH	0.10 MG7L
191703	PHOSPHORUS ITOT DISSOLVED	-	1190103	PHOSPHORUS :TOT	0,059 MG/L
201702	SILICA:REACTIVE	22,4	1211701	SULPHATEIDISSOL	56,4*
		MG/L			MG/L
2541802	CALCIUM DISSOLVED	28,6* MG/L	2591801	DISSOLVED	35,5* MG/L
2641703	POTASSIUM	3,8*	2651703	SODIUM	107.
	DISSOLVED	MG/L		DISSOLVED	MG7L
HE APPRO	XIMATE COST OF: TH	E ABOVE TES	TS IS S	52,60	алан Алан Алан Алан Алан Алан Алан Алан Алан Алан
HERE IS	NO CHARGE FOR THE	FOLLOWING	TESTS		<u>.</u>
2570	IRON	E	. ·		
· · · · · · · · · · · · · · · · · · ·				• •• •• •• •• •	
			· · ·		
		SAMPLE N	0. 014539#	CONTINUED ON NEX	T PAGE.
	<u> </u>		· <u></u> , ·		

OCTOB	ER 29, 1980 E MIN	NVIRONMENTAL ISTRY OF THE			1
	WATER GU	ALITY REPORT	FOR SAMP	LE 015277W	
•	TOI	INVENTORY &	ENGIN. H.	Q .	
		777 BROUGHTO			· · · · · · · · · · · · · · · · · · ·
		VICTORIA BC			
	FOR SITE: 1401	769 WILLI	AMS LK +C	ONTRACT 70	· · ·
	SAMPLING DATE (0 1300 HR	S	· · · · · · · · · · · · · · · · · · ·
	SAMPLE TYPE: F SAMPLING DEPTH				
	SAMPLED BY: IN	VENT. & ENGN			· · · · · · · · · · · · · · · · · · ·
	DATE RECEIVED	BT LABURATUR	TT SEP 09	/80	
0040101	РН	8.0 REL UNIT	0071701	RESIFILT, 105C	696. MG/L
		,			
0110101	SPECIFIC CONDUC	1140. Umho/cm	usoo101	COMP.DIL.COND.	1310, UMH0/CM
1010101	ALKALINITY: PHNL	L 0.5	1020101	ALKALINITY: TOT	553.
		MG/L		· · · ·	MG/L
1041702	CHLORIDE;DISSOL	36,9 MG/L	1061701	FLUORIDE:DISSOL	0.19 MG/L
070002	HARDNES. T:CACO3	547,	1091703	NITROGNINO2 NO3	6,6
		MG/L			MG/L
1130101	NITROGN:KJELDAH	0.57 MG/L	1191703	PHOSPHORUS :TOT DISSOLVED	0,029 MG/L
1201702	SILICA:REACTIVE	55*0	1211701	SULPHATE: DISSOL	
		MG/L		ļ. Tari sara sara kara sara sara sara sara sara	MG/L
2541413	CALCIUM DISSOLVED	66.4 MG/L	2570209	IRON Total	1,3 MG/L
2571413	IRON	1,21	2591413	MAGNESIUM	92.7
	DISSOLVED	MG/L		DISSOLVED	MG/L
2600509	MANGANESE Total	0,04 MG/L	2601401	MANGANESE DISSOLVED	0,03 MG/L
2641703	POTASSIUM	7,2	2651703	SODIUM	38.6
	DISSOLVED	MG/L		DISSOLVED	MG/L
HE APPRO	XIMATE COST OF TH	E ABOVE TEST	SIS S	65,90	
					• .
	<u></u>	·····	· · · · · · · · · · · · · · · · · · ·		· · · ·
	······································	···· · · · · · · · · · · · · · · · · ·			
		SAMPLE NO	015277W	CONTINUED ON NE	XT PAGE.
				· · · · · · · ·	

NQVEMB		NVIRONMENTAL			1	-
A		ISTRY OF THE)
	WATER QU	ALITY REPORT	FOR SAMP	LE 015278W		. 2
×/		INVENTORY &				
		777 BROUGHTO VICTORIA, B.C				
			· .	ι '		Э
····	FOR SITE: 1401	769 WILLI	AMS LK +C	ONTRACT 70		
	SAMPLING DATE (S): SEP 8/8	10 2000 HR	S		0
	SAMPLE TYPE: F				· · ·	
	SAMPLING DEPTH Sampled by: In	VENT. & ENGN	IRG BR., M	OE		3
B	DATE RECEIVED	BY LABORATOR	Y SEP 09	/80		·
0040101	РН	8.0	0071701	RES:FILT, 105C	700.	\supset
		REL UNIT		•	MG/L	
0110101	SPECIFIC CONDUC	1140.	0300101	COMP DIL CONU.	1310.	5
	i, and and an	UMHD/CM			UMHOVCM	
1010101	ALKALINITY:PHNL	L 0,5	1020101	ALKALINITY:TOT	553,	5
		MG/L			MG/L	
1041702	CHLORIDE:DISSOL	35.5	1061701	FLUURIDE: UISSOL	0,20	Э
	n di di Tarray di sa di di mampina. A	MG/L			MG/L	. 1 I
1070002	HARDNES, T: CACO3	567.*	1091703	NITROGNINO2 NO3	6,70)))
		MG/L			MG/L	1
1130101	NITROGN:KJELDAH	0,58	1191703	PHOSPHORUS :TOT	0,066	5
		MG/L		DISSOLVED	MG/L	
1201702	SILICA:REACTIVE	22,6	1211701	SULPHATE:DISSOL	29,7	0
Trolior.		MG/L			MG/L	
2504802	CAL CTIM	68,8*	2570209	IRON	D,i	· · J
2541802	CALCIUM DISŠOLVED	MG/L	E DÍ DEC 4	TOTAL	MG/L	
267.047		· ·	2591801	MAGNESIUM	<u>96.*</u>	0
2571413	IRON DISSOLVED	O.: MG/L	2371001	DISSOLVED	MG/L	
	i se 🖛 🧯 🗭		3601404	MANGANESE	L 0.02	С
2600209	MANGANESE TOTAL	0,02 MG/L	2601401	DISSOLVED	L 0.02 MG/L	1
		•	0154747	-	77 0	
2641703	POTASSIUM DISSOLVED	7.3 MG/L	2651703	DISSOLVED	37.9 MG/L	
	-				- 	
THE APPRO	XIMATE COST OF TH	HE ABOVE TES	TS IS S	65,90		5
					•	· .
				• • • • • • • •		C
		,	* .	,		1 25
						I "\

SAMPLE NO, 015278W CONTINUED UN NEXT PAGE,

0 11 0

C

beil 6660 wrs

