PROPOSED PERMANENT 15.240m [50'] O/A LENGTH STEEL GIRDER WITH MODULAR TIMBER DECK BRIDGE FOR: CHUCHINK-MESSINKA FSR AT 12km

SITE: 125179
($121^{\circ} 54^{\prime} 42^{\prime \prime} \mathrm{N}, 54^{\circ} 37^{\prime} 06{ }^{\prime \prime} \mathrm{W}$)

NOTES:

1. COORDINATING REGISTERED PROFESSIONAL: MICHAEL WATSON, RPF
2.1. FOR THE PURPOSES OF THIS DESIGN THE TERM PERMANENT AS IT REFERS TO DURATION OF THIS 3. IESIGNLLATION MEANS FORTY FIVE (45) YEARS OR LESS
2. DESIGN LIVE LOAD
3.1. DESIGN VEHICLE: BCFS L-100 AS PER MOFLNRORD (STD-EC-000-001 TO 002)
4.1. SUPERSTRU

WITH CANCSASE AND IS TO TAKE INTO ACCOUNT LOGGING TRUCKS WITH UNBALANCED LOADS AND OFF-CENTER RRIVING
4.2 EXCEPT AS NOTED, SPECIFICATIONS TO BE AS PER MOFLNRORD STANDARD DRAWINGS FOR TIMBER
DECK BRIDGES (STD-EC-O20-01 TO OT), LOCK BLOCK ABUTMENT AND CONSTRUCTION PADS (STD-EC-050-0 AND STI-EC-O50-13, STD-EC-050-15), AND NO POST BARRIERS/GUIDE LOGS (STD-E-010-05).
4.3. IF SUPERSTRUCTURE HAS BEEN USED PREVIOUSLY AT ANOTHER LOCATION IT MUST BE INSPECTED BY
PROFESSIO NAL ENGINEER PRIOR TO USE AT THIS SITE IF A NEW STRUCTURE IS PLANNED, OEL IS TO ROFESSIONAL ENGINEER PRIOR TO USE AT THIS SITE II IF A NEW STRUCTURE IS PLANNED OEL IS TO
REVIEW FBRRICATIO DRAWINGS PRIOR TO FABRICATION OF SUPERSTRUCTURE FOR COMPLANCE WITH THIS DESIGN.
4.4. CHECK REQUIRED BEARING TO BEARING DISTANCE AND DEPTH OF ACTUAL STRUCTURE PRIOR TO
4.5. GENERAL ARRANGEMENT DRAWING. SOME SUPERSTRUCTURE COMPONENTS NOT SHOWN. REFER TO FABRICATION DRAWINGS.
5. DESIGN OF ROAD APPROACHES AND DECK WIDTH:
5.1. HORIZONTAL ALIGNMENT AND ROAD WIDTHS TO PERMIT W-19 TRUCKS WITH 0.5 m CLEARANCE INSIDE
5.1. HoRIzO
cURES
5.2. DESIGN ROAD
CREEK NOTES:
6. CREEK NOTES:
6.1. STREAM RIPARIAN CLASS IS S3 BASED ON STREAM WIDTH AND FISH PRESENCEACCESS (SERNBC)
6.2 STREAM BED MATERIAL CONSISTS OF GRAVEL, COBBLLES AND BOULDERS UP TO 0.35 m .
6.3. THE DESIGN FLOOD IS EXPECTED TO BE: CLEARWATER FLOOD DEBRIS FLOOD \square DEBRIS FLOW
8.4. DESIGN FLOOD- $-100=13 \mathrm{~m} / \mathrm{s}$ © $2 \mathrm{~m} / \mathrm{s}$. THE PEAK FLOW FOR DESIGN PURPOSES WAS 4. DESIGN FLOOD: $10100=13 \mathrm{~m} / \mathrm{s}$ @ $2 \mathrm{~m} / \mathrm{S}$. THE PEAK FLOW FOR DESIGN PURPOSES WAS DETERMINED BASED
ON REVIEW OF CHANNEL CHARACTERISTICS. PREVIOUS HIGH FLOW EVIDENCE, AND REVIEW OF THE RESULTS OF PEAK FLOW EMPIIICAL MODELS SUCH AS THE RATIONAL METHOD AND A REGIONAL
ANALYSIS. WATERSHED CHARACTERISTICS, AND OTHER RELEVANT INFORMATION ARE ALSO USED TO ESTIMATE PEAK FLOW.
6.5. MODERATE LIKELHOOD OF WOODY DEBRIS MOVEMENT
6.8. CLIMATE CHANGE: CLIMATE CHANGE WAS CONSIDERED IN THE Q1OO FLOOD ASSESSMENT. LIKEL (IDF-CCTool-htps $/ / /$ dif-ccuwwo.ca) DEVELOPED BY WESTERN UNIVERSITY, CANADA AND LIKELY CHANGES TO
 (hthps $/ / /$ Pacifincocimate.org') WERE USED TO ESTIM
THE RLANED LFE SPAN OF THE STRUCTURE
7. GEOTECHNICAL:
7.1. FOUNDATION DESIGN REFERENCES THE CANADIAN FOUNDATION ENGINEERRING MANUAL. SUBSURFACE INFORMATION HAS BEEN INFERRED FROM SITE OBSERVATIONS OF SOIL EXPOSURES IN ROAD CUTS AND ALONG STREAMBANKS AND FROM SHALOW HAND DUG TEST PITS AND PROBES (SEE DESCRIPTION ON
SHEET 4). NO DETALED SUBSURFACE FIELD INVESTIGATIO WAS CONDUCTED (LARGE TEST PITS OR BORE HOLES). FIELD CONDITIONS MAY VARY FROM THOSE INFERRED. IF. UPON EXCAVATION. FIELD CONDITIONS VARY FROM THOSE IN
INSTALLATION MAY BE REQUIRED.
7.2. FOOTING DESIGN BASED ON ASSUMED SOIL BEARING CAPACITY OF 200 kPa

8. FIELD REVIEWS:

8.1. A PROFESSIONAL ENGINEER OR THEIR DESIGNATE IS REQUIRED TO INSPECT THE FOLLOWING ACTVITIES
PRIOR TO PROVIING RECORD DRAWINGS AND A CROSSING ASSURANCE STATEMENT: -LAYOUT OF RIPRAPIABUTMENT LOCATION PRIOR TO INITIAL EXCAVATION

- LAYOUT OF RIPRAP/ABUTMENT LOCATION PRIO
- RIPRAP AND ABUTMENT CONSTRUCTIO
- BACKFIL MATERIAL AND TECHNIQUE
- OTHER SITE INSPECTIONS AT THE DISCRETION OF THE PROFESSIONAL

9. Installation notes
9.1. RIPRAP SOURCE HAS NOT BEEN IDENTIFIED.
9.2. NOTE THAT WHERE EXCAVATION SPECIIIICATIONS ON THESE DRAWINGS CONFLLCT WITH WORKSAFEBC

ENVIRONMENTAL NOTES:

1. WORK TO PROCEED IN ACCORDANCE WITH DFO AND BCMOECCS CONDITIONS NOTED AT THE WEB SITE:
 REMOVALIRELOCATION FOR IN-S
CLASSIFIED AS S 1 THROUGH S4.
2. A SEDIMENT MANAGEMENT PLAN WTHH SPECIFIC MITIGATION MEASURES TO MINIMIZE SILTATION MUST BE A QUALIFIED ENVIRONMENTAL PROFESESIONAL (QEP).
3. ALTERATION TO STREAM BANKS AND IN-STREAM WORK (EXPECTED) SHOULD BE SUPERVISED BY AN
ENVIRONMENTAL MONITOR
4. REMOVE THE MINMUM AMOUNT OF RIPARIAN VEGETATION NECESSARY TO INSTALL A SAFE STRUCTURE

信
5. MACHINERY IS TO BE CLEAN AND LEAK FREE WHHIL ON SITE. PETROLEUM
MONITORED WITH NO FUELING WITHIN THE RIPARIAN MANAGEMENT AREA.
6. DIRECT SURFACE WATER AWAY FROM WORK SITE DURING CONSTRUCTION. ENSURE DITCH WATER AND SURFACE RUNOFF RROM THE R RAD DOE NOT FLOW DIIRECTY INTO THE STREAM. INSTAL CROSS DRAIN
CULVERTS ON THE APPROACHES AND CONSTRUCT SUMPS AS REQUIRED.

PARTIAL MATERIALS LIST	
QT	ITEM DESCRIPTION
1	ROL NON-WOVEN GEOTEXTILE: MIRAFI 18ON OR EQUIVALENT
7 m	LEVELING COURSE (SANDY GRAVEL OR 19 mm CLEAR CRUSH)CRUSH RECOMMENDED WHERE WATER EXPECTED IN FOOTING AREA
4	$0.2 \mathrm{~m} \times 1.5 \mathrm{~m} \times 4.0 \mathrm{~m}$ (15) PRECAST CONCRETE CONSTRUCTION PADS
12	STD CONCRETE BLOCKS (INTERLOCKING): $0.75 \mathrm{mX0.75m} \mathrm{\times 1.5m}$ (TYP.)
10	FLAT TOP CONCRETE BLOCKS (INTERLOCKING): $0.75 \mathrm{~m} \times 0.75 \mathrm{mX1.5m}$ (TYP.)
2	TREATED TMBEER SILLS $0.2 \mathrm{~m} \times 0.4 \mathrm{~m} \times 4.8 \mathrm{~m}$ (16 fi)
10	STEEL PINS: $25 \mathrm{mm@}$ (11) TO ATTACH SILL TOLOCK BLOCKS
8	LAG BOLTS: $18 \mathrm{~mm}(1 / 4 / 1) \times 200 \mathrm{~mm}$ TO ATTACH STEEL GIRDERS TO SILL
8	TIMBER BALAST WALL: $0.15 \mathrm{~m} \times 0.3 \mathrm{~m} \times 8.5 \mathrm{~m}$ LENGTH. NUMBER OF TIMBERS CORRESPOND TO 1.25 m DEEP STRUCTURE. NUMBER OF TIMBERS WIL VARY BASED ON ACTUAL DEPTH OF STRUCTURE
30	DECK CLIPS TO ATTACH PANELS TO GIRDERS (6 PER PANEL AS PER STD-EC-020-07)
4	SETS OF CONCRETE NO-POST APPROACH BARRIERS: 690-CRB-H. CTB-1E, CBN-H
4	W-054 SERIES DELINEATORS (2 LEFT, 2 RIGHT)
1	BAG ROADSIDE GRASS SEED MIX
	RIPRAP: SEE SPECIFICATIONS ON SHEET 4

PECIIFICATIONS FOR CONCRETE BLOCKS (INTERLOCKING):

CONCRETE MUST HAVE A 28 DAY STRENGTH OF 2OMPa MINIMUM UNLESS OTHERWISE - SPECIFIED.

HE FINISALL BE CAST MONOLTHICALLY (I.E., NO COLD JOINTS ALLOWED).

- CLASS 1 - CLASS 1 FINISH IS THE BASIC FINISH TO BE PRODUCED ON ALL FORMED SURFACES NOT EXPOSED TO VEW UNLESS A BEBER F
REQUIRED BY THE DRAWINGS OR SPECIAL PROVIIIONS
-• IN ORDER TO PRINS OR SFECIAL PROVIONS.
- ${ }^{\text {IN }}$ ORDER TO PRODUCE A CLASS 1 IIIISH. THE FORMWORK SHALL BE
-. ALL TIES BOLTS. NAILS AND OTHER METAL SPECIFICALLY RECUIRED FOR
CONSTRUCTION PURPOSES SHALL BE REMOVED OR CUT BACK TO A DEPTH
OF 50 mm FROM THE SURFACES OF THE CONCRETE AND THE RESULTING
OF 50 mm FROM.
HOLES FLLEDED.
HOLES FILLED.
-- NO DRY
EMBED SHAL BE PERMITED FORM TIE RODS SHALL REMAIN EMBEDDED AND TERMINATE NOT LESS THAN 50mm FROM THE FORMED FAC
OF THE CNCRETE REMOVABLE EMBEDDED FASTENERS ON THE ENDS OF OF THE CONCRETE. REMOVABLE EMBEDDED FASTENERS ON THE ENDS OF
THE RODS SHALL BE SUCH AS TO LEAVE HOLES OF A REGULAR SHAPE FOR - HONEYCOMBS AND VOIDS OVER $500 \mathrm{~mm}^{2}$ IN AREA SHALL BE FILLED. - BLICK SIZE MUST BE ANOOX750x750mm. THE BLOCKS SHALL BE REASONABLY SQUARE, WITH THE DIAGONALS WITHIN A TOP AND BOTTOM SURFACES MUST BE FLAT TO A TOLERANCE OF $\pm 3 \mathrm{~mm}$ UNDER A - COOMm STRAIIGTT EDEE.
- THAWETE SHALL BE AIR ENTRAINED 4-7\% TO PROTECT THE SURFACE FROM FREEZE - EACH BLoCK muSt Contain a satisfactory embedded lifting device. - EDGES SHALL BE CHAMFERED.

DWG No:2052-1-SITE 125179-002	SHEET: 2 OF 6	DESIGN BY: JUSTIN BEVERIDGE, P.ENG. DESIGN DATE: SEPTEMBER 4, 2020		SEAL Of b.C. P.ENG.
		DRAWN BY: TODD FORBES SITE VISIT: ONSITE ENGINEERING LTD. SITE VISIT DATES: AUGUST 18, 2020 FILE NAME: SITE125179.DWG SCALE: AS NOTED REVISION NUMBER REVISION DATE: ALL MEASUREMENTS IN m UNLESS OTHERWISE NOTED.	PROPOSED PERMANENT 15.240m [50'] O/A LENGTH STEEL GIRDER WITH MODULAR TIMBER DECK BRIDGE FOR: CHUCHINK-MESSINKA FSR AT 12km SITE: 125179 ($121^{\circ} 54^{\prime} 42^{\prime \prime} \mathrm{N} .54^{\circ} 37^{\circ} \mathrm{08} \mathrm{m}$)	

PHOTO \#1 - FROM CROSSING LOOKING TO TOWN

PHOTO \#3 - FROM UPSTREAM LOOKING TO CROSSING

PHOTO \#2 - FROM CROSSING LOOKING TO WOODS

PHOTO \#4 - FROM CROSSING LOOKING DOWNSTREAM

OOPOSED PERMANENT 15.240 WITH MODULAR TII FOR: CHUCHINK-ME SITE $\left(121^{\circ} 54^{\prime} 42^{\prime \prime} \mathrm{N}\right.$	DESIGN BY: JUSTIN BEVERIDGE, P.ENG DESIGN DATE: SEPTEMBER 4, 2020 REVIEWED BY: PAUL MYSAK, P.ENG DRAWN BY: TODD FORBES SITE VISIT DATES: AUGUST 18,2 FILE NAME: SITE125179.DWG
	Revision number:

DWG No:2052-1-SITE 125179-006
SHEET: 6 OF 6

