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EXECUTIVE SUMMARY 

Knowledge of British Columbia’s (B.C.) complex surficial geology is crucial to understanding groundwater 
and surface water resources throughout the province. Information about landforms and surficial 
materials is collected in various inventory types including soil surveys, surficial geology, terrain mapping, 
well logs, and aquifer mapping. Provincially, these inventories have spatial gaps and overlaps and have 
been collected at various scales and purposes. B.C. currently lacks a consistent, and authoritative data 
layer representing surficial materials and landforms that covers the province at an appropriate scale to 
support current data needs. This study aims to fill a scale and information gap for provincial and regional 
level prioritization and decision making.  

The overall intent of this project is to create a harmonized, categorical classification for substrate and 
landform information. In addition, to generate continuous spatial maps to increase the utility of 
substrate and landform information for decision making in B.C., we’ve focussed on identifying places 
with thick surficial deposits and accumulations of unconsolidated sediments with high aquifer potential, 
such as in valley bottoms.  

During this second phase of the project, a classification system was developed that includes two levels 
of Broad Landform classes (Figure 1). The first level was developed specifically to meet the needs of the 
project which is intended to divide the landscape into generalized regions and to improve upon the 
provincial Quaternary Geology layer (BC Geological Survey 2023). The broad landform class currently 
includes two categories, Eroding Upland and Valley Fill.  We describe Eroding Upland as continuous 
areas that are dominated by erosional, bedrock-controlled landforms, typically consisting of 
mountainous terrain and extensive uplands and plateaus. We describe Valley Fill as continuous areas of 
sediment accumulation in the landscape such as major valleys and lowlands dominated by 
constructional landforms such as terraces, planes, and hummocky glacial deposits. At the second level of 
the classification, the valley fill category is further divided into seven classes such as texture and aquifer 
type. Many of the classes were adapted from Howes and Kenk (1997).  

The Southern Interior EcoProvince was selected as the study area for piloting a modelling approach to 
generating predictive maps. We took a simple modelling approach using a random forest model to 
generate preliminary maps of each broad landform class.   

Training points were randomly generated within five mapsheet areas in the Clinton, Manning Park and 
Westwold areas (Figure 2). The training points were attributed by a terrain expert with a categorical 
value from each surficial material class, based on aerial imagery, elevation contours, information about 
the geological and glacial history of the area. The random forest models were used to identify the 
relationships between a surficial material class and 31 covariate raster layers. For each class, two models 
were developed, one with the original training points and a second where the number of training points 
within each category was synthetically balanced.  

Internal model metrics provide an estimate of model performance within the five mapsheets with 
training points and do not provide any information about model performance in other parts of the study 
area. Overall, within the training point mapsheet areas, the models had high internal accuracy rates (98-
99%) and balancing the training data consistently improved model performance (within the mapsheet 
areas). Each “balanced model” was used to create a predictive raster map of the study area. An 
independent data set is needed to validate the predictive maps. As the project progresses towards 
model optimization and model finalization during the next phase, it is recommended that both the 
training dataset and a validation dataset are developed across the study area. 
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The training point distribution did not sufficiently capture categories that have a small spatial extent 
(e.g. organic and fine texture material). These ‘minority’ classes, which are represented by a small 
sample of training points, are difficult for the models to interpret. Strategically capturing minority 
features during training point development would benefit predictive modelling. It is recommended that 
the next phase of training point development is designed to create more balanced training data. For 
example, the mapsheets did not cover areas with glaciolacustrine deposits, which were therefore not 
included in the training data or the models. 

Outside of the five mapsheets with training data, across the rest of the study area, model performance 
was evaluated qualitatively by visually assessing the predicted classification distributions compared to 
expected characteristics of the surficial materials in that area. Predictions of valley fill over the study 
area agree with major valley systems. Most of the model predictions agree with aquifer and quaternary 
mapped layers and provide a greater level of detail in some areas. The predicted broad landform map is 
helpful in identifying areas with significant sediment accumulations, including areas with aquifer 
potential where more detailed aquifer mapping or exploration could be conducted. The eroding upland 
category did well overall, although it is less representative in the Thompson Plateau. In this area upland 
depositional landscapes are common, generally hummocky glacial deposits such as kame/esker, 
drumlinized till, and kame/kettle topography. A third Broad Landform category for upland depositional 
features is recommended for the next phase of the project.  

As the terrain and landscape within the Southern Interior EcoProvince is variable, training data from the 
five mapsheets did not sufficiently capture all of the landscape characteristics of the study area. Some of 
the predictive maps did not match professional knowledge in areas that had different characteristics 
than the training point mapsheets. This modelling pilot revealed that when generating predictive maps, 
it is important to be mindful of capturing the variability of the covariate distribution with your training 
data and of extending predictions beyond the rule shed or areas represented by the training data (i.e. do 
not extend you predictions to areas with underlying characteristics that are inconsistent with the 
training areas).   

Attribution of training points and random forest modelling is a cost-effective way to map simple discrete 
categories that are discernable from image interpretation. We recommend that future phases of the 
project adopt a more sophisticated modeling approach that includes K-fold cross validation, sensitivity 
analyses, and model optimization. As many of the covariate rasters are highly correlated, it is 
recommended that covariate reduction techniques such as variance inflation factor (VIF) and recursive 
feature elimination (RFE) are applied during future modelling. 

Finally, in future phases of the project the classification and predictive mapping approach can be rolled 
out across the province to create consistent surficial material mapping layers for BC.  
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1. BACKGROUND 

British Columbia (B.C.) lacks mid-scale coverage of spatially accurate substrate and landform 
information, even though B.C. has the most variable geology, surficial materials, and landforms in 
Canada. This variety is a driver of the wealth of natural resource values in the province including 
forestry, mining, biodiversity, water resources, wildlife habitat, agriculture, as well as First Nations 
traditional land and water uses. Substrate and landform information is often neglected in analysis and 
planning due to the lack of provincial and regional coverage of consistent, reliable data.  

This study aims to fill scale and information gaps for provincial and regional level prioritization and 
decision making. Current substrate and landform datasets that cover the province have poor spatial 
accuracy and polygon sizes that are too generalized for provincial and regional spatial analysis. For 
example, the spatial layer Geology Quaternary Alluvium and Cover in the BC Geographic Warehouse (the 
Quaternary Geology layer) was derived through bedrock mapping and provides a high-level 
representation of areas where thick quaternary sediments cover the bedrock. This data source is not 
detailed or spatially refined, yet it remains one of our most ubiquitous data sets on surficial sediments in 
B.C. This results in the use of these datasets outside their intended and appropriate use.  

Existing detailed inventories of substrate and landform information have spatial gaps and overlaps, 
inconsistencies between datasets, and use a variety of classification schemes that together make the 
compilation of these inventories challenging. Open and complex legends are not conducive to GIS 
analysis and use outside of a small community of experts in the data and classification. The classification 
developed under this project provides a closed (categorical) legend that describes landforms and 
substrate (surficial material) complexes in B.C. by identifying repeating patterns of enduring features in 
the landscape and defining the surficial materials, landforms, and processes that dominate these 
complexes. The classification is therefore conducive to machine learning and GIS analysis. 

The classification developed in this project also aims to find the “common ground” in the existing 
geomorphology related datasets in the province to support Provincial decision making and priority 
setting. The resulting datasets will be relevant to land-use planning and natural resource management 
relating to climate change strategy, water resources, environmental assessment, habitat management, 
inventory and gap filling, monitoring, cumulative effects, extreme events and natural disasters, and land 
use planning.  

1.1 Key Findings from Phase 1  

Phase 1 of this study (Todd and Filatow, 2024) yielded a harmonized surficial material legend, review of 
a variety of surficial geology related mapping products, and insights related to the challenges of 
consolidating multiple mapping projects into a single map.  By considering and addressing the following 
limitations identified in Phase 1, it will be possible to improve surficial mapping results in future studies:  

1. Creating a surficial geology map by overlaying available surficial material maps (e.g. terrain, 
soils, and surficial geology maps) proved to be challenging and inefficient due to disagreement 
in surficial materials, polygon boundaries, mapping conventions, and project purposes 

2. Attempts at creating rules related to scale, year and purpose had significant exceptions and 
yielded unreliable and inconsistent results. 

3. The simplified mapping methodology, which included producing new linework, proved slow and 
repetitive of mapping that had been completed in the past.  
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4. The Vanderhoof Watershed Group (the study area from Phase 1) was a challenging pilot area as 
the surficial materials consisted of thick valley fill with low relief, which can be difficult to map 
using air photo interpretation alone.  

5. Using multiple and patchy datasets proved to be time consuming and inefficient.  

1.2 Purpose and Objective of Phase 2 Study  

The purpose of Phase 2 was to define a surficial materials classification that enables the prediction of 
discrete categories using expert interpreted points and a machine learning mapping approach. The 
overall goal was to produce consistent 25m x 25m raster predictive maps with reported accuracy for the 
Southern Interior Ecoprovince. The resulting data and maps fill the scale gap between physiographic 
regions and inventory polygons for soils, surficial geology, aquifers, and terrain mapping in B.C.  

The overall intent of the classification and spatial layers developed in this work is to increase the utility 
of substrate and landform information for decision making in B.C. This was achieved through the use of 
reconnaissance provincial layers to prioritize areas for detailed mapping. The focus was on identifying 
places in the landscape with thick surficial deposits and accumulations of unconsolidated sediments with 
high aquifer potential, such as in valley bottoms.  

A parallel initiative was to develop a set of training points in an initial study area, which were attributed 
with the surficial materials classification system by a geomorphologist with expertise in terrain mapping. 
The training points were then used to pilot the classification system through a machine learning model 
and predictive mapping workflow. The resulting classification and predictive mapping approach can be 
improved, validated, and rolled out across the province in subsequent phases of the project to create 
consistent surficial material mapping layers for B.C.  
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2. METHODOLOGY  

2.1 Surficial Material Classification System  

A classification system and domain names were outlined for mappers to use during training point 
interpretation (Appendix C). The classification system provides a hierarchy of landform and surficial 
material classes and properties that can be interpreted from images.  

The classification system includes two levels of Broad Landform classes, defined in Appendix C. At the 
broadest level of the hierarchy, the landscape is divided into generalized regions. The Broad 
Landform class (Level 1, Figure 1) was developed specifically to meet the objectives of this project and is 
intended to improve upon the provincial quaternary geology layers (BC Geological Survey 2023).  The 
broad landform class currently include two categories, Eroding Upland and Valley Fill.   

Eroding Uplands are continuous areas subject to net erosion and scour such as mountains, hills and 
plateaus dominated by bedrock, veneers and blankets. It consists of mountainous terrain 
characterized by erosional and bedrock-controlled landforms, and extensive uplands and plateaus 
that may be transitional between mountains and valleys. The eroding upland category represents 
high elevation and bedrock-controlled areas of the landscape. This category currently captures all 
areas that do not fit the definition of valley fill.  

Valley Fill are continuous areas subject to net sediment accumulation in the landscape such as 
major valleys and lowlands dominated by constructional landforms such as terraces, plains, and 
hummocky glacial deposits. It is defined as regions of thick, unconsolidated sediment accumulation 
in the landscape, and characterized by extensive depositional landforms. It is extensive in lowlands 
and, depressions within B.C. Valley fill is common at relatively lower elevations of most major 
watersheds and within major river valleys. Across B.C., these areas are dominated by alluvium (river 
deposits) and sediments deposited by glacial ice, glacial lakes, and glacial meltwater. They include 
thick materials reworked by gravity and wind such as eolian veneers, dunes and landslide deposits. 
Along valley side walls the valley fill category includes materials deposited in fans, cones, and 
aprons where steep slopes and tributary valleys join mainstem valley fill. 

As this study is focussed on aquifers in surficial materials, the valley fill category is further characterized 
according to seven classes such as texture and aquifer type (Level 2, Figure 1). Many of the classes were 
adapted from Howes and Kenk (1997). Between three and thirteen categories were identified within 
each class, however not every class was captured by this pilot study.  Initially, aquifer subtypes were also 
considered as a class. However, during training point attribution and model testing, challenges with 
differentiating some categories arose and the aquifer subtype class was not carried through to the end 
of Phase 2. This is discussed further in the aquifer type results section.  
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Figure 1: Summary of classes and categories within each class that were captured by training points in the Phase 2 study area. A full list of 
categories is included in Appendix C. 
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2.2 Study Area and Training Point Development  

The Southern Interior EcoProvince (Southern Interior, Figure 2) was selected as the study area for 
piloting the modelling and predictive mapping methodology. Madrone Environmental Services Ltd. 
(Madrone) generated 500 random training points, with a minimum spacing of 150 metres, within five 
1:20,000 grid map sheets in Manning Park, Westwold, and Clinton Areas (mapsheets 092H007, 
092H006, 082L042, 092P002, and 092P003, referred to as Training Point Mapsheet Areas) as shown on 
Figure 2. These areas were chosen as there is a variety of topography and surficial materials to provide 
input to the predictive mapping model.  

Using the classification, training point interpretation was conducted by Madrone in ArcGIS Online. A 
categorical value from each class was assigned to each point based on the aerial imagery, elevation 
contours, information about the geological and glacial history of the area, and existing mapping 
inventories. Information from GWELLS well logs and aquifer mapping were not used to attribute points 
in order to reduce “data leakage” between the training data and potential validation datasets (Johann 
de Jong, 2017). 

Madrone conducted quality assurance throughout the mapping process. Point attribution was reviewed 
by qualified Registered Professional Geoscientists. The Professional Geoscientists signed-off on products 
and the final report. The final delivery of the products were in accordance with Terrestrial Ecosystem 
Information (TEI) digital data submission standards (Resources Information Standards Committee, 
2023). While attributing the training points, notes were recorded to support the development of a 
classification key (Appendix A).  

 

Figure 2:  Phase 2 training points mapsheet areas and study area encompassing the Southern Interior 
EcoProvince. 



W A T E R  S C I E N C E  S E R I E S  N o .  2 0 2 4 - 1 4  6 

 

Similar to Bulmer et al. (2016), it was identified that provincial maps should be developed as a mosaic of 
maps within subdivisions of the province. As the terrain, geology and geography of B.C. is highly 
variable, models are expected to make unique associations between terrain and climate variables and 
the surficial material class in different areas of the province. EcoProvinces (Dermarchi, 2011) were 
selected to use as subdivisions or “rule sheds” for the modelling as they describe areas with unique 
ecology, geography and climates where glacial, depositional and erosional environments are likely to be 
similar.  

2.3 Co-variate Raster Stack Development 

The covariate rasters were developed using a 25 m digital elevation model (DEM) raster layer in B.C. in 
Albers projection. The Albers projection was selected to facilitate development of continuous predictive 
maps across the entire province with a single projection. The study area was set to encompass the 
Southern Interior EcoProvince along the mapsheet grid (Figure 2) and the DEM was trimmed to the 
study area extent. 

The DEM was smoothed using the focal function in R (Hijmans, 2024). This uses a moving window 
method to average across a 3 by 3 matrix, with equal weight on all cells. Using a stream vector shapefile 
from the B.C. Freshwater Atlas (Province of British Columbia n.d.), the stream network was then burned 
5 m into the DEM surface to facilitate topographic analyses which assess the movement of water over 
the landscape by avoiding raster resolution issues.  

The DEM was further processed to create 23 DEM derivative terrain rasters using the rsaga R package 
with SAGA GIS (Brenning, 2008), as listed below and described further in Appendix B. Rasters were also 
created for eight annual climate variables using ClimateBC (Wang et al. 2022). Climate rasters were 
generated using a 100 m scale DEM, created by averaging the 25 m DEM, and then subsampled back to 
the 25 m scale. The climate variables selected are listed below and are all directly calculated, rather than 
derivative parameters. All rasters were created with the same spatial extent and resolution, and then 
stacked to be used as covariates in the predictive modelling. The raster variables were selected based on 
those used in similar predictive mapping studies (Bulmer et al. 2016; Filatow et al. 2020).  

Terrain Variables: 

1. Elevation 
2. Aspect  
3. Top-Down Flow Accumulation (CAREA) 
4. Plan Curvature (CPLAN) 
5. Profile Curvature (CPROF) 
6. Diurnal Anisotropic Heating (DAH) 
7. Eastness 
8. Northness 
9. Topographic Openness – Negative and Positive (NOPEN, POPEN) 
10. Height Above Channel (HACH) 
11. Channel Network Base Level (CNBL) 
12. Multiresolution Index of Valley Bottom Flatness (MRVBF) 
13. Multiresolution Index of Ridge Top Flatness (MRRTF) 
14. Analytical Hillshade (HILL) 
15. Slope 
16. SAGA Wetness Index (TOPOWET) 
17. Topographic Ruggedness Index (TRI) 
18. Topographic Position Index at four scales (TPI_500, TPI_1000, TPI_2000, TPI_5000) 
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19. Multi-scale Topographic Position Index at two scales (MSTPI, MSTPI_WIDE) 

Climate Variables: 

20. Mean Annual Temperature (MAT)  
21. Mean Warmest Month Temperature (MWMT) 
22. Mean Coldest Month Temperature (MCMT) 
23. Temperature Difference Between MWMT and MCMT (TD) 
24. Mean Annual Precipitation (MAP) 
25. Mean Annual Summer Precipitation (MSP) 
26. Annual Heat-Moisture Index (AHM) 
27. Summer Heat-Moisture Index (SHM) 

2.4 Predictive Mapping with Machine Learning Model 

Preliminary modelling was conducted during Phase 2 to assess: 

• the predictability of the classifications,  

• the predictions generated with the produced training points, and  

• the gaps in training data needed to improve predictions.  

A simple modelling approach was taken using a random forest model to generate preliminary models 
and maps. Figure 3 presents a conceptual flow chart of the steps associated with predictive modelling 
and the progress that has been made in the Southern Interior to date. 

2.4.1 Training Classification Matrix 

The raster stack was sampled at the training point locations to create a covariate matrix that included 
the coordinates, surficial material classifications, and covariate values sampled from the rasters.   

2.4.2 Data Balancing 

The imbalance between the number of observations in each category within a class creates challenges 
for the model fit (e.g., Bulmer et al. 2016; More and Rana 2017; Bader-El-Den et al. 2018). This is a 
common challenge in data analysis aimed at predicting or understanding a rare but important event, 
such as scarps, landslides, undifferentiated, and organic deposits. Balanced datasets have been 
demonstrated to improve the predictive accuracy of minority classifications when using random forest 
models. Data balancing was performed on the training classification matrix with a combination of 
synthetic minority oversampling technique (SMOTE)(Chawla et al., 2002) and random undersampling. 
Each class was resampled such that all categories had a 1:1 balance except for the eroding upland 
category which was undersampled to have a 1:1, 2:1 or 5:1 ratio with the other categories depending on 
the number of samples available in the other categories. During Phase 2 of the project, modelling was 
only intended to assess methodologies and make recommendations for next steps, a sensitivity analysis 
was not performed to optimize data balancing.  

2.4.3 Random Forest Modelling 

A random forest model was used to identify the relationships between the categories for each class and 
the covariates. Random forest models are classification algorithms which ensemble the results of 
multiple decision trees. The models were run in R using functions from the ModelMap package 
(Freemen et al. 2022).  Modelling was completed separately for each class.  

Model performance was determined based on an internal error metric called out-of-bag error (OOB 
error), the percent correctly classified (PCC), and the kappa statistic. The OOB error indicates how well 
the algorithm performed when predicting held-out, or unseen, training data. A random sample of one 
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third of the input training data, known as a bootstrap, is used to generate a fully-grown decision tree 
which is then compared with held out data to calculate error. Metrics from all other trees are combined 
to establish overall difference (Breiman, 2001). The kappa statistic is a chance corrected metric that 
reflects the difference between observed agreement and agreement expected by random chance. 
Variable importance was compared using the Mean Decrease in Accuracy and the Mean Decrease in 
Gini.  

Each model was used to create a predictive raster map across the Southern Interior study area. 
However, model performance metrics such as OOB error and kappa, only provide an estimate of model 
performance within the Training Point Areas (five mapsheets). Across the rest of the study area, model 
performance was evaluated qualitatively by visually assessing the predicted classification distributions 
compared to expected characteristics of the surficial materials in that area. A separate validation data 
set is needed to conduct validation of predictive maps in future phases of the project.  
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Figure 3: Conceptual flow chart presenting the steps associated with predictive modelling and the 
progress that has been made in the Southern Interior to date.  
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3. RESULTS AND DISCUSSION 

3.1 Surficial Material Classification System  

Appendix C outlines the broad landform classification domain tables defining each class and the 
included categories as summarized in Figure 1 above.  

3.2 Training Point Development  

Figure 4 shows where training points were attributed with classification categories. Table 1 presents the 
distribution of categories attributed to training points for each class after minor data processing. Not all 
categories identified in the classification were attributed in the training point set. Some categories do 
not occur in the Southern Interior, such as marine deposits, and others were not captured by the 
distribution of random points, such as lacustrine and glaciolacustrine deposits.  

The imbalance between the eroding upland and valley fill categories in the broad landform class, creates 
high sample imbalance in the other classes, as the Level 2 categories are only attributed within the 
valley fill category. 

Categories of very fine material texture and scarp landform subclass had to be merged with other 
categories as SMOTE technique requires a minimum of three points to create synthetic samples. Low 
sample numbers in some categories were challenging for balancing and modelling. To balance the data, 
synthetic samples of some categories were generated in numbers that were orders of magnitude 
greater than the original sample size and/or the majority categories was significantly undersampled to 
balance the data. 

Table 1:  Number of training points attributed in each category of a class.  

Broad 
Landform 

Blank Eroding Upland Valley Fill 
 

 

11 2200 301  

Landform 
Subclass* 

Blank Eroding Upland 
Organic 

Palustrine 
River Glaciofluvial Cone Apron 

25 

 

11 2200 9 136 61  
  Thick Glacial Fill Fan Delta Ablation 

3 
 

 

  9 58  

Surface 
Expression* 

Blank Eroding Upland Plain or Terrace Fan Undulating Scarp  

11 2200 198 76 27 2  

Surficial 
Material* 

Blank Eroding Upland Undifferentiated  Fluvial Glaciofluvial Colluvium Organic 

11 2200 9 145 85 53 9 

Aquifer 
Type* 

Blank Eroding Upland Type 1 Type 3 Type 4 
 

 

28 2200 115 85 84  

Material 
Texture* 

Blank Eroding Upland Very Fine Fine Medium Coarse  

22 2200 1 157 126 6  

Sorting 
Class* 

Blank Eroding Upland Poorly sorted 
Moderately 

sorted 
Well sorted 

 

 

20 2200 92 81 119  

Thickness 
Class* 

Blank Eroding Upland Thin Medium 
Medium to 

Thick 
Thick 

 

178 2200 3 48 10 73  

*Eroding Upland training points were not classified during this Phase 2 assessment and are shown as “Eroding 
Upland”.  
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Figure 4:  Map of training points locations.
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3.3 Co-variate Raster Stack Development 

As shown in the predictor correlation plot in Figure 5 below, many of the raster covariates were highly 
correlated. This is not unexpected, as many of the covariates were derived from the same DEM, and 
therefore the values are correlated to elevation. Multicollinearity creates challenges for machine 
learning models and can lead to inaccurate variable importance and overfitting. During the next phase 
of the modelling (Phase 3) use of covariate reduction methods such as variance inflation factor (VIF) and 
recursive feature elimination are recommended to improve model performance (Misra and Yadav 2020; 
Chan et al. 2022).  

The relative importance of each covariate within a model was estimated by the Mean Decrease in 
Accuracy and the Mean Decrease in Gini (Freemen et al. 2022). The Mean Decrease Accuracy plot 
expresses how much accuracy the model loses by excluding each variable. The more the accuracy 
suffers, the more important the variable is for the successful classification. The mean decrease in Gini 
coefficient is a measure of how each variable contributes to the homogeneity of the nodes and leaves in 
the resulting random forest. 

 

 

Figure 5:  Visual representation of degree of correlation between covariate rasters. 
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An example of the ranked predictor importance for the broad landform balanced model is included in 
Figure 6 below. Results indicate that variables calculated with a higher radius of influence or multiple 
radiuses of influence, e.g., TPI_5000, MRVBF, had higher significance in the models. These covariates 
may help the model determine a cell’s relative position in the landscape, such as whether it’s located in 
a higher order valley. However, as mentioned above, multicollinearity of covariates may mask their true 
importance (Chan et al. 2022).  

 

 

Figure 6: Ranked predictor importance for the Broad Landform balanced model using the Mean Decrease 
in Accuracy and Mean Decrease in Gini metrics. The variables are presented in order of descending 
importance. 
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3.4 Predictive Mapping with Machine Learning Models 

For each class, two random forest models were run, one with the original training points and one with 
synthetically balanced training points. A summary of the model metrics discussed in section 2.4.3 for 
each model is included in Table 2 below. These metrics suggest that overall model performance, within 
the training point mapsheet areas was good and that data balancing improved model performance.  

Without a validation dataset the model performance can only be evaluated quantitatively in Training 
Point Mapsheet Areas. Therefore, the values in Table 2 only represent model performance within the 
Manning Park, Westwold and Clinton mapsheets (5/>300 mapsheets in the study area).  

Model performance within the rest of the study area was qualitatively assessed using a visual 
comparison of the model generated predictive maps with expert knowledge of the landscape and 
review of other available terrain, bioterrain, and soils mapping layers not provided to the models. The 
provincial Quaternary Geology layer is also presented with the mapping results below for visual 
comparison. However, we know that this dataset provides a rough presence-absence estimate of glacial 
sediments, which is not reliable in many locations.  

A discussion of the results for each class is included in the following sections.  

Table 2:  Summary of model outputs for balanced and unbalanced models of each class. 
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Broad Landform* 2 30 Y 301 4400 (1:1) 0.9 0.98 99% 

Broad Landform 2 30 N 301 2501 1.8 0.91 95% 

Landform Subclass* 8 30 Y 3 4950 (1:2) 0.9 0.99 99% 

Landform Subclass 8 30 N 3 2501 5.0 0.76 95% 

Aquifer Type* 4 30 Y 84 2750 (1:2) 1.7 0.98 98% 

Aquifer Type 4 30 N 84 2485 4.8 0.76 95% 

Surficial Material* 6 30 Y 9 3080(1:2) 1.7 0.98 98% 

Surficial Material 6 30 N 9 2501 4.8 0.77 95% 

Surface Expression* 4 30 Y 27 5500 (1:2) 0.8 0.99 99% 

Surface Expression 4 30 N 27 2501 4.0 0.81 96% 

Thickness Class* 5 30 Y 3 1980 (1:5) 1.2 0.98 99% 

Thickness Class* 5 30 N 3 2334 2.2 0.98 78% 

Material Texture* 4 30 Y 6 2750 (1:2) 2.0 0.97 98% 

Material Texture 4 30 N 6 2246 11.9 0.88 74% 

Sorting Class* 4 30 Y 81 2750 (1:2) 1.8 0.98 97% 

Sorting Class 4 30 N 81 2253 13.3 0.87 72% 

* For balanced models, ratios within brackets indicate the balance between the eroding upland category and the 
other categories in the class.  
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3.4.1 Broad Landform  

The broad landform models had 99% accuracy in the training point mapsheet areas. Visually, the broad 
landform map predicted throughout Southern Interior reflects the concept of the broad landform class, 
although performance cannot be quantified (Figure 7). The valley fill category is generally predicted in 
areas that were anticipated, although it may be slightly under-represented on the landscape. In areas 
with mountainous topography, the model predictions are more representative as the training points 
were developed in more classic examples of glacial valleys (Figure 9 and Figure 10).  

Within the Okanagan-Thompson Plateau, where there were no training point mapsheets, the division of 
the landscape into eroding upland and valley fill is not as clear as in the mountain-valley landscapes 
where the definitions were developed. Figure 8 shows areas on the plateau which have been coarsely 
mapped as Quaternary deposits in the provincial mapping layer but are not within linear valley bottoms. 
Our expert knowledge of the area indicates that these landforms likely consist of thicker depositional 
sequences, however, the model prediction identified these areas as eroding upland. This suggests that a 
third Broad Landform category is needed to differentiate extensive depositional uplands and plateaus 
generally consisting of till plains, drumlins, and hummocky glacial deposits such as eskers, kames, and 
kettled topography, for example, in the northern Nicola Valley area east of Merritt (Figure 8).  
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Figure 7:  Broad Landform predictions across the Southern Interior. 
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Figure 8:  Broad Landform predictions compared to Quaternary Geology polygons in the Thompson Plateau and northern Nicola Valley areas to 
the North and East of Merritt respectively.  

Nicola Valley North  



W A T E R  S C I E N C E  S E R I E S  N o .  2 0 2 4 - 1 4  18 

 

 

Figure 9:  Broad Landform predictions compared to Quaternary Geology polygons near Shuswap Lake and Armstrong, to the East of Kamloops.  
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Figure 10:  Broad Landform predictions compared to Quaternary Geology polygons in the South Okanagan areas. 
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3.4.2 Landform Subclass  

The categories of the landform subclass that were attributed within the Southern Interior valley fill were 
ablation, cone and apron, fan and delta, river, glaciofluvial, organic palustrine and thick glacial fill (Figure 
11). Glaciolacustrine and scarp landforms are also expected to be present within valleys in the study 
area, however they were not captured by the training points and therefore, were not included in the 
model.  

The balanced model was 99% accurate within the training point mapsheet areas. Outside of the training 
point mapsheet areas, the predicted model results appear reasonable, but with room for improvement 
(Figure 12). For example, thick glacial fill sediments were likely over predicted in the Kelowna area based 
on our knowledge of the terrain and existing mapping inventories (Figure 13), perhaps because there 
are glaciolacustrine sediments present, which was not a class provided to the model. Despite the high 
number of categories in this class, the modelling and mapping results are promising and we expect that 
by improving and increasing the training data this class can be modelled with reliable accuracy. Model 
results demonstrate the diversity of landforms occurring within valley fill areas and provides more 
information than the Quaternary Geology layer.    
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Figure 11:  Landform Subclass predictions across the Southern Interior. 
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Figure 12:  Landform Subclass predictions compared to Quaternary Geology polygons in the Kamloops and Shuswap Lake areas.  
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Figure 13:  Landform Subclass predictions compared to Quaternary Geology polygons in the Kelowna and Vernon areas. 

Figure Extent 
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3.4.3 Surficial Material  

After processing the training data, the surficial materials categories that were attributed within the 
valley fill were colluvium, fluvial, glaciofluvial, organic palustrine and undifferentiated. Glaciolacustrine 
and glacial till are other categories that we expect to be present within valleys, however they were not 
captured by the training points. Increasing the number of training points representing minority classes 
will be a focus during the next phase (Phase 3 of the project).  

The balanced model predicted the surficial material categories within the training point mapsheet areas 
with 98% accuracy. In other parts of the Southern Interior study area the predictive maps look 
reasonable, but in some instances was not able to effectively discern between fluvial and glaciofluvial 
materials (Figure 14). For the surficial material class, the undifferentiated category was overpredicted in 
the Kelowna area (Figure 15). As the training points did not capture any lacustrine or glaciolacustrine 
materials, the predictive map does not include these material types, despite their known occurrence 
within valleys in the study area. During the next phase, capturing these materials when adding 
additional training points will improve model performance.  

As modelled surficial material is only predicted within the valley fill, although this is an improvement on 
the Quaternary Geology layer, it’s not expected to be as useful to natural resource decision makers as a 
map that is fully attributed across the landscape. Bulmer et al. (2016) created a provincial soil parent 
material map at the 100 m scale using training data derived from existing soil mapping inventories and 
validation data from the B.C. Soil Information System (BCSIS) data. A similar approach to map surficial 
material at the 25 m scale may yield better results. 
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Figure 14:  Surficial Material predictions across the Southern Interior. 
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Figure 15:  Surficial Material predictions in the Kelowna area. 
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3.4.4 Surface Expression  

After processing the training data, the surface expression categories that were attributed within the 
Southern Interior valley fill were plain or terrace, fan, and undulating (Figure 16). Surface expressions 
such as hummocky or ridged, and cones, were used exclusively in the eroding upland and therefore 
were not included in the model. Two points were attributed as scarps within the valley fill, however the 
model requires a minimum of three points per category and therefore these points were not included in 
the current phase of modelling.  

The balanced model was able to predict the surficial material categories within the training point 
mapsheet areas with 99% accuracy. Outside of the training point mapsheet areas the predictive map 
classified the landscape reasonably well. As shown in Figure 17 below, in some areas the model over 
predicted fans and underpredicted undulating expression.  

Generally, a predictive map of surface expression which is only attributed within the valley fill areas may 
not be that useful for natural resource decision makers. It is likely more beneficial to attribute this class 
across the entire landscape. The categories within this class could be revised to reflect the typical 
surface expression standard from Howes and Kenk (1997) during a future phase.  
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Figure 16:  Surficial Expression predictions across the Southern Interior. 
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Figure 17:  Surficial Expression predictions along the Fraser River and Thompson River valleys north of Lytton. 

Figure Extent 
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3.4.5 Aquifer Type 

Initially, both aquifer type and aquifer subtype were included as classes under consideration. However, 
it proved difficult to differentiate between some aquifer subtypes during training point attribution and 
model testing. With the desktop approach it was particularly difficult to differentiate with high 
confidence between subtypes 4a, 4b and 4c, which are all aquifer types with glacial modes of 
deposition. After discussion within the working group, only the subtype 1a category was attributed for 
the aquifer subtype class, as the subtype 1a category could be consistently identified and attributed 
using the desktop approach. In future phases of the project the sub-type 1a category will be 
incorporated into the aquifer type class (Figure 18).  

During Phase 2, aquifer type categories 1, 3, 4 and Not Mapped were attributed in the study area (Figure 
19). All of the aquifers attributed as type 1, were also attributed as subtype 1a indicated that no subtype 
1b or type 1c aquifers were captured by the training points. During Phase 3, subtype 1a and other type 1 
aquifers will be strategically captured by the training points to differentiate them during modelling.   

The balanced model classified the aquifer type categories with 99% internal accuracy for the training 
point data (applies to training mapsheets only). Outside of the training mapsheets, review of the 
predictive map indicates that the model is over predicting Type 3 aquifers across the landscape, 
particularly in the western portion of the study area shown in Figure 20.  

 

 

Figure 18:  Summary of aquifer type and subtype classification results and modifications recommended 
for Phase 3 of the project.  
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The model also appears to be predicting type 4 (glacial aquifers) in areas where we would expect type 1 
(fluvial aquifer) to be predicted. Figure 21 presents the eastern portion of the study area and shows that 
when compared to mapped aquifer polygons, the model does not consistently discern between type 1 
and type 4 aquifers. Capturing the variability of type 1 aquifers in the Phase 3 training points (i.e. adding 
smaller subtype 1b and 1c aquifers, as only 1a was captured during Phase 2) is expected to improve 
model differentiation between type 1 and type 4 aquifers. It should also be noted that aquifer mapping 
is completed through hydrogeological interpretation often based on limited information or uneven 
distribution of borehole logs. Further, many valleys in B.C. are known to host multiple stacked aquifers. 
For example, a subtype 1b aquifer may overly a subtype 4b aquifer. Therefore, discrepancies between 
current aquifer mapping and model results may not indicate that the model is objectively incorrect in all 
cases.   

During the modelling exercise it was noted that there was a definition discrepancy between the B.C. 
Aquifer Subtype descriptions and the aquifer categories applied by Madrone. The B.C. Aquifer Mapping 
captures type 2 deltaic aquifers along Shuswap Lake (Figure 21). However, Madrone reserved the type 2 
aquifer category for deltas along the marine environment, attributing lake deltas as type 3 alluvial fan 
aquifers. This could be adjusted when extending this project to other areas of the province. Figure 21 
demonstrates that the model struggled to predict aquifer types outside of the training areas as the 
fans/deltas along Shuswap Lake were predicted to be type 4 aquifers rather than type 2 or type 3.  
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Figure 19:  Aquifer Type predictions across the Southern Interior. 
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Figure 20:  Aquifer Type predictions compared to mapped aquifer polygons in the northwest portion of the study area, including the Thompson 
Plateau. 

Figure Extent 
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Figure 21:  Aquifer Type predictions compared to mapped aquifer polygons near Kamloops, Shuswap Lake and Armstrong. 

Figure Extent 
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3.4.6 Thickness Class  

It was identified by Madrone during training point attribution that it is challenging to accurately identify 
the valley fill thickness using a desktop approach. Madrone only attributed points in areas where they 
had sufficient confidence to describe the thickness and therefore only 150 points were attributed.  

The internal accuracy of the balanced model was 99% for the mapsheet areas with training points. 
Outside of the training mapsheets, the predicted map does not appear to align with expert knowledge. 
Our regional knowledge indicates that valleys within the Okanagan area host relatively thick sediment 
deposits  however the model overpredicted the “medium thickness” category ( -3 m thickness) across 
much of this area (Figure 22).  

This exercise indicated that material thickness may be effectively modelled by machine learning, when 
high quality training data is provided, but that generating enough training data with high confidence 
may be challenging with a desktop approach.  

It is challenging to generate accurate thickness class estimates using a desktop approach as material 
thickness tends to vary according to localized patterns rather than regional scale trends. Including 
borehole and well log data into the training or validation data for this class may improve model results 
in the future.  
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Figure 22:  Material thickness predictions across the Southern Interior.
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3.4.7 Material Texture and Sorting Class 

Similar to thickness, material texture and sorting class were difficult to attribute through a desktop 
assessment. Approximately 300 points were attributed with each of these classes, typically in fluvial or 
glaciofluvial deposits. Predictive maps generated by the balanced models are included in Figure 23 and 
Figure 24 below. As only one point was attributed as very fine texture, that category could not be 
included in the model. As previously described the training data did not include glaciolacustrine deposits 
which are fine textured and well sorted. Predictive maps did not reflect the known distribution of these 
fine textured and well sorted materials. 

Visual assessment of the predictive maps suggest that these classes have low accuracy outside of the 
training point mapsheet areas. For example, based on our expert knowledge, valley fill sediments south 
of Okanagan Falls have very coarse texture. However, the models predicted fine texture in this area. The 
training data provided insufficient for the model to discern between different valley bottom textures.  
The model also appears to over predict poorly sorted materials, as we understand that valley bottoms 
tend to have fluvial of glaciofluvial materials which are moderately to well sorted. Sediment textures 
and sorting tend to be landform level occurrences, rather than landscape level making it difficult for the 
model to identify patterns.  

We recommend that attribution of these categories is not continued as it was difficult to develop high 
confidence training data, and these classes are expected to have relatively lower value to decision 
makers. 



W A T E R  S C I E N C E  S E R I E S  N o .  2 0 2 4 - 1 4  38 

 

 

Figure 23: Sorting Class predictions across the Southern Interior. 
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Figure 24:  Material Texture predictions across the Southern Interior 
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4. LEARNINGS AND RECOMMENDATIONS 

Classification: 

• Predictions of valley fill over the study area presents reasonable patterns in the major valley 
systems. Much of the distribution is in agreement with aquifer and quaternary fill layers but 
provides a greater level of detail in some areas. The layer also highlights some areas of 
contiguous fill and connectivity that are missed by the quaternary fill layer. 

• Areas of mountains and bedrock-controlled slopes are appropriately predicted in the eroding 
upland. 

• Within the Okanagan-Thompson Plateau the division of the landscape into eroding upland and 
valley fill is less clear. A third broad landform category could be explored to capture large areas 
of generally hummocky glacial deposits such as kame/esker, drumlinzed till, and kame/kettle 
topography, such as the Lake of the Woods area east of Merrit. It is unclear if this is due to 
mapper confusion or model confusion. The mapping instructions for these areas was not 
provided and a third category of thick materials in the upland may lead to better mapping of 
these thick materials on upland surfaces. 

• The surface expression and surficial material classes were only attributed within the areas of 
valley fill, and therefore predictive maps have limited attribution. Natural resource decision 
makers are expected to benefit from maps of these classes more extensively across the 
landscape. Therefore, expanding these classes to fully classify the landscape is recommended.  

• Madrone identified that several aquifer subtypes classes were difficult to differentiate through 
desktop review, particularly the 4a and 4b subtypes which are glacially derived and highly 
variable in stratigraphy and depth. In the next phase, the aquifer type and subtype classes will 
be modified into a single class where only type 1 aquifers will be subdivided into subtype 1a and 
other type 1 aquifers, with subtypes 1b and 1c aquifers lumped together.  

• Madrone also identified that the sorting class, material texture and material thickness classes 
were difficult to attribute with high certainty through desktop review alone. It is recommended 
that the sorting class and material texture classes are not carried through to the next phases of 
the project as they are not expected to provide high value to decision makers. Thickness class 
should be further evaluated to see if high confidence training data can be developed.  

• As the landform subclasses have the most categories and the greatest sample imbalance 
between categories, it was the most challenging to model. A recommendation for the next 
phase of the project is to create more training points within the valley fill and to strategically 
sample the minority classes. The classification could also be reviewed to see if the number of 
categories is required.  

• It was identified through the project that scale specific guidance and descriptions are important 
for consistent application of the classifications across landscapes and users. Specific instructions 
and examples are beneficial to support consistent mapping and classification. 

Training Points: 

• The training points developed to date are located within mapsheets near the outer edges of the 
study area. To improve model predictions more training points across other areas of the 
Southern Interior are needed.  Particularly, in the Thompson Plateau, which has different valley 
and upland patterns. 

• The mapsheets did not cover areas that describe the distribution of glaciolacustrine deposits 
that accumulated in major glacial lakes in the Southern Interior, such as glacial Lake Penticton 
and glacial Lake Thompson (Fulton, 1969) and thus the presence of these materials were not 
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predicted, including well-known deposits in the Naramata bench, Kamloops, and Summerland 
areas. These deposits are fine textured and well sorted and their absence from the training 
dataset also impacted the results of the material texture and sorting classes. 

• The imbalance between the eroding upland and valley fill categories in the broad landform class, 
creates high sample imbalance in the other classes, as the categories are only attributed within 
the valley fill class. Minority classes which are represented by a small sample of training points 
are difficult for models to interpret.  Strategically capturing minority features during training 
point development would benefit predictive modelling. It is recommended that the next phase 
of training point development is designed to create a more balanced training data.  

Modelling: 

• The ModelMap R package, which was used for random forest modelling, was recently 
discontinued. It is recommended that future phases of the project adopt a more sophisticated 
modeling approach that includes K-fold cross validation, sensitivity analyses, and model 
optimization. The caret R package is an example of a tool that could accommodate that 
workflow.  

• As many of the covariate rasters are highly correlated, it is recommended that covariate 
reduction techniques such as variance inflation factor (VIF) and recursive feature elimination are 
applied during future modelling.  

• The deglaciation patterns and modes of deposition are variable throughout the Southern 
Interior. We did not provide the model any covariate layers with information about this glacial 
history. Adding data to the model that highlights glacial patterns may improve model 
performance in the future. Further, distributing training data across the study area rather than 
in dense mapsheets, may help the model identify these patterns.  

• Predictive modelling assumes that landscape features will consistently share similar attributes 
and covariate values. Models will most accurately identify physiographic relationships for areas 
with similar landscapes, climate, glacial history, geology, ecosystems, etc. Models are expected 
to be more consistent within a watershed, Ecosection, Ecoprovince, or other related landscape 
units. Landscape units with similar covariate distributions are described as “rule sheds” (Bulmer 
et al, 2016). This modelling pilot revealed that when designing the sampling plan for training 
data it is important to be mindful of the rule sheds captured by the training points. For example, 
use of dense mapsheets was beneficial to capturing a variety of features within an area but was 
only representative of a handful of rule sheds within the study area. When generating predictive 
maps, it’s important to be mindful of not extending predictions beyond the rule sheds 
represented by your training point distribution. For example, Figure 25  compares the 
distribution of the MSTPI_WIDE covariate between the training point mapsheets and the entire 
study area. This demonstrates that the mapsheets selected for training data do not capture the 
variability of the study area as a whole.  

• Without a validation dataset or training points throughout the study area, the model 
performance can only be evaluated qualitatively in the training mapsheets. As the project 
progresses towards model optimization and model finalization, it is recommended that both the 
training dataset and a validation dataset are developed across the study area.  

• Model outputs and predictive maps should be reviewed by geomorphologists with expertise in 
the surficial geology and glacial history of the Southern Interior prior to finalizing. 
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Figure 25:  Distribution of Multiscale Topographic Position Index Covariate (MSTPI_WIDE) values across 
the study area (top) and across the training points (bottom).  

5. CONCLUSIONS 

The main conclusions of Phase 2 of this project were: 

• Within a 1:20 000 NTS mapsheet with 500 training points, random forest predictions yield high 
internal model accurately rates (98-99%).  

• Training and validation data distributed throughout the study area is needed to more effectively 
train models and validate results. Accuracy rates reflect predictions within the pilot map sheets 
and do not provide any information about accuracy in other parts of the study area. The random 
point distribution within a mapsheet poorly captured minority categories that have a small 
spatial extent (e.g. fine texture material). 

• The combination of attributed training points and random forest modelling is a cost-effective 
way to map simple discrete categories that are discernable from image interpretation. The 
division of the landscape into two broad landform categories (eroding upland and valley fill) was 
effective except in upland depositional areas such as in the Thompson Plateau. Addition of a 
third Broad Landform category to upland depositional features is recommended for the next 
phase.  
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• Predictive maps of valley fill distribution are informative for identifying areas of the landscape 
with significant sediment accumulations, including the identification of areas with aquifer 
potential where more detailed aquifer mapping or exploration could be conducted.   

• Our preliminary predictive maps indicate that within areas mapped by the provincial Quaternary 
Geology layer there is a diverse range of landforms, surficial materials, expressions, aquifer 
types, deposit thicknesses, and material characteristics. This limitation is important to note for 
decision makers who may require more detailed landscape classification.   

• Predictive mapping results will likely support decision makers with identifying areas where field 
data collection or detailed mapping may be valuable.  

• With appropriately distributed and detailed training data, models can effectively subdivide the 
valley fill areas into smaller landforms and potential aquifer types.  

• When extending this mapping into other Ecoprovinces in B.C. other gaps in the mapping and 
modelling process may be identified.  

• Model results and categories should be critically reviewed by geomorphologists for each 
Ecoprovince run. 
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APPENDIX A:  MADRONE METHODS SUMMARY 

  



 

DOSSIE R 20. 02 77  MADRO NE ENVIRON MENT AL  SERVICES LT D.  

MADRONE
environm enta l se rvic es ltd.

1081 Canada Ave 
Duncan,  BC  V9L  1V2  

p.  250.746.5545  
f .  250.746.5850  

#1 –  30435 P rogress ive  Way 
Abbots ford,  BC  V2T  6Z1 

p .  604.504.1972  
f .  604.504.1912  

 
in fo@madrone.ca 
www.madrone.ca 

 
 
 
 
October 18, 2022 
 
Deepa Filatow 
Ministry of Environment and Climate Change Strategy (MoECCS) 
Deepa.Filatow@gov.bc.ca  
 
 
Dear Ms. Filatow,  

RE: Surficial Material Mapping in Support of Groundwater Management – 2022 Update 

Contract #: GS17JHQ092 
WO#: WO21JHQ020  
TEI SR#: 4 
 
This letter is a summary of the method used to attribute the randomized points, including outline of how 
decisions were made during attribution. The following map sheets have been completed for the above 
forementioned contract, for a total of 2500 points (500 per map sheet). 

• 092H007 & 006 – Manning Park 
• 082L042 – Westwold 
• 092P002 & 003 – Clinton 

 
ArcGIS setup for Mappers 
The following layers were available to review while mapping: 

• Groundwater Aquifers 
• Groundwater Wells 
• Geology Quaternary Alluvium and Cover 
• Surficial Units and Surficial Linear Features 
• BC Glacial Features 
• Previous maps at various scales 

 
We found that the layers that were the most helpful were: 

• Groundwater Aquifers 
• Groundwater Wells 
• Geology Quaternary Alluvium and Cover 
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Model Fields 
We began this process with a list of specific fields that we thought would be helpful for the model: 

• Broad Landform Type 
• Surficial Material 
• Surficial Expression 
• Material Texture Class 
• Sorting Class 
• Material Thickness Class 
• Layers and Bedding Class 
• Aquifer Class 
• Aquifer Subtype 
• Aeolian Deposit 
• Valley Fill Subclass 
• Representative of Area 
• Area of Representation 
• Field Verified Radius of Representation 
• Point Quality 
• Sample Placement 
• Sample Type 

 
As the project progressed and discussions occurred, focus was spent on the following fields: 

• Broad Landform Type 
• Surficial Material 
• Surficial Expression 
• Aquifer Class 
• Aquifer Subtype 
• Valley Fill Subclass 
• Representative of Area 
• Area of Representation 
• Point Quality 

 
We found that there were issues with these fields: 

• Material Texture Class – too assumptive at desktop scale 
• Sorting Class – too assumptive at desktop scale 
• Material Thickness Class – too assumptive at desktop scale 
• Layers and Bedding Class – too assumptive at desktop scale 
• Aeolian Deposit – location specific 
• Field Verified Radius of Representation – desktop study, not applicable 
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We modified or partially used these fields: 
• Aquifer Subtype – anything not 1A would be too assumptive at desktop scale; points were this 

was already attributed were changed to <Not Mapped>, or <Not Applicable> if their Aquifer Class 
was <Not Mapped>. 

• Valley Fill Subclass – some categories could also work for Eroding Uplands or work better for 
Eroding Uplands rather than Valley Fill. Because we were focused on Valley Fill only, instead of 
blanket attribution across landscape, there was a period of adjusting required when considering 
how to attribute a given domain. 

 
 
Attribution 
Some of the decisions made for a given field require the [future] users to have a good understanding of 
glacial history, geomorphic processes, surficial material, hydrogeology, and surface water-groundwater 
interactions. As such, the steps provide insight on the decision-making process but do not make the actual 
point attribution. 
 

1. Review the study area with only the imagery and contours on, making note of any significant 
valleys that are connected and may provide groundwater resources. Make note of any hanging 
valleys that traditionally would exclude a continuous groundwater resource.  

2. Start by attributing Broad Landform Type field by differentiating between Valley Fill or Eroding 
Upland:  

a. Zoom to one map sheet, in the range of 1:50,000 to 1:100,000. Turn on the Groundwater 
Aquifers layer and the points symbolized by elevation groups. For points that are outside 
of the Groundwater Aquifers layer and at an elevation greater than 1,500 m, classification 
of Broad Landform Type as likely to be Eroding Upland. Exclude any points that occur in 
valleys with a direct connection to a groundwater resource, this can include valleys at 
upper elevations if the valley connection is contiguous. 

i. When using the Groundwater Aquifers, layer, use with a degree of caution, it is 
meant as a guideline, but it is not considered exact in its spatial accuracy. Your 
professional discretion on the extent of the valley fill will most likely override the 
Groundwater Aquifers layer.  

ii. Another layer that is useful in delineating the valley fill versus the eroding upland 
is the Groundwater Wells layer. This is a point file you can use in tandem with the 
Groundwater Aquifers layer; it is also worth looking at it separately and noting 
any clusters of wells outside of the aquifer extent layer. 

iii. Geology Quaternary Alluvium and Cover is another layer that can get you 
started, but we found it is less helpful than the Groundwater Aquifers layer. 

b. Once you have completed this exercise with the elevation greater than 1500 m, use the 
symbols for the 1200-to-1500-meter range. Pay close attention to avoid populating any 
fans that extend to the valley floor. Those must be considered separate at this point.  
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c. Review any points that are outside of the Groundwater Aquifers layer and are present at 
an elevation less than 1200 m. Depending on the material and geomorphology, these 
points may not be considered in the eroding upland category. An example of points would 
be those on fans, terraces, or benches.  

3. Once the majority of the sample points have been assigned as either Eroding Upland or Valley Fill, 
you can do a batch update of Eroding Upland points, to fill in Aquifer Class as ‘Not Mapped’ and 
Aquifer Subtype as ‘Not Applicable’. 

4. If you follow this process, there will likely be a distinctive band of sample points along the 
transition zone between Eroding Upland and Valley Fill. To determine if the points fall within 
either of those broad landform types you should zoom in to a scale of approximately 1:5,000 up 
to 1:25,000. At this scale in this region, you will likely encounter glacial terraces or fans (colluvium 
or alluvial). Depending on the geomorphic feature, you will attribute the point as either Eroding 
Upland or Valley Fill.  

a. In the case of fans, there may be multiple points within that unit, however the attribution 
of those points may vary depending on the location of the point relative to the fan’s 
geometry. Fans produce an opportunity to add an opportunistic point. 

5. Once all points have their Broad Landform Type attributed, further attribution can occur for those 
points identified as Valley Fill. While the intention is to fill in every data point across all fields, we 
found that accuracy of some of the fields was quite low for desktop analysis; unless we had high 
confidence in a data point’s attribute, the value would be left as null. 

 
 
General Tendencies and Decisions regarding Attribution 
To visual what was being attributed, we created copies of the working file, symbolized multiple ways so 
we could toggle between seeing all Surficial Material calls at a glance, then to Broad Landform Type, to 
Aquifer Class. This helped with consistency across a map sheet and between regions (see Figure 1). 
 

1. Surficial Material - Depending on your location within BC, surficial material found in the valleys 
tend to be fluvial, glaciofluvial, glaciolacustrine, or organic. Glacial till may also be present 
depending on the size of the valley. Colluvium within Valley Fill is rare and tends to be associated 
with significant mass movement into the valley. We rarely used ‘undifferentiated’ as a surficial 
material call, and ‘not mapped’ was reserved for either waterbodies or significant points of human 
disturbance such as large infrastructure. 

2. Surficial expression – we utilized provincial standards to assign appropriate expressions based on 
the surficial material and the geomorphic feature the point is located on, i.e., fluvial plain rather 
than fluvial undulating. Surface expressions such as hummocky, scarp, and geomorphons, were 
used exclusively in the Eroding Uplands. While undulating is found predominantly within the 
Eroding Uplands, where it was used within the Valley Fill were in areas that were associated with 
mass movement or buried features. 
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FIGURE 1: EXAMPLE OF SAME DATA SYMBOLIZED IN DIFFERENT WAYS CONCURRENTLY TO SHOW CONSISTENCY AND TRENDS ACROSS AN 
AREA; RADIUS OF REPRESENTATION (ORANGE BUBBLES), SURFICAL MATERIAL (COLOUR CODED POINTS), AND SURFICAL EXPRESSION 
(LABELLED). 
 

3. Material Thickness - almost 150 data points were attributed with the material thickness. And 
when they were, they were in areas where the mapper felt confident in the call because of their 
experience in the area or a very distinct and recognizable feature. 

4. Material Texture - just over 300 data points were attributed with the material texture; these 
points tend to be of fluvial or glacial fluvial origin where the texture could be confidently discerned 
from the desktop analysis of the features. 

5. Sorting class - just over 300 data points were attributed with a sorting class; similar to material 
texture, the points tend to be of fluvial or glacial fluvial origin. Common attribute combinations 
used: 

a. Fluvial plains = well sorted 
b. Glaciofluvial plains and tills = moderately sorted 
c. Colluvium and fans = poorly sorted 

6. Layers and Bedding – this field was attempted but abandoned after discussion within the working 
group; this attribute is best determined at either field scale or with site specific data. It also was 
not clear on how differentiating between layers vs bedding would be beneficial – this topic is on 
hold. 

7. Aquifer Class was assigned for every Valley Fill data point. The surficial material and expression 
were cross referenced with the Aquifer Class to determine the most appropriate classification. 

8. Aquifer Subtype - After discussion within the working group, the subtype was only attributed for 
Aquifer Class 1 where the subtype was 1A. All other values for subtype were attributed as not 
mapped or not attributed. 
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9. Radius of representation - utilizing a feature in ArcGIS that allows a layer’s symbology to change 
based on a field’s value, as well as a buffer layer in increments of 50 meters, all Valley Fill points 
were given a radius of representation with an approximate confidence up to 25 meters.  

a. If a data point was close to a feature where the point would no longer be 100% 
representative at a scale of ~1:25,000, the representative value is the maximum radius 
without overlapping that different feature.  

b. If the data point has radius of representation less than 10 m, the point was not considered 
representative. 

c. The radius of representation is unique to that data point and is not provided as a range. 
d. A point’s radius could cross the radius of another point if the points were representative 

of the same attribution. 
 
 
Recommendations 

• When attributing a data point in the transition zone between points that are distinctly Valley Fill 
or Eroding Uplands, it is beneficial to work from the Valley Fill side towards the Eroding Upland, 
keeping in mind the relationship of the overall feature relative to an underlying aquifer. This is 
especially important if the feature is a colluvial fan that transitions to a cone as the slope increases 
towards the uplands. 

• The Groundwater Aquifer layer was used primarily for its spatial extent rather than the aquifer 
type; the use of a deltaic aquifer in that layer does not align with the standard bioterrain unit for 
delta. Prior to moving into coastal areas of BC, a review of the delta definition in this framework 
is required. 

 
 
Future Considerations 

• While given the opportunity for opportunistic points, it was not fully exercised in these map 
sheets. After discussion in the working group, we feel like those opportunistic points can provide 
an opportunity for refining the model in complex terrain. 

• Features that are long and thin (i.e., avalanche track, debris slides, lower order streams) can be 
difficult to attribute and provide little value to the model unless opportunistic points are added 
to delineate the feature to a larger spatial extent. 

o This is especially true when it is a lower order stream, with potential Aquifer Subclass of 
1C. 

• Surficial expressions can be limited in their value to the model depending on the scale of the 
feature.  

o For example, a glaciofluvial scarp may be present in a map sheet, however, to capture 
that in a point, the feature would have to have a radius of representation greater than 10 
m (to be considered representative), and have additional opportunistic points added to 
show linear extent. However, a non representative point, or a long and thin linear feature 
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is not likely to represent significant source of groundwater at the model’s scale, even 
though the feature may hold an ecological or resource value. 

 
Yours truly, 

MADRONE ENVIRONMENTAL SERVICES LTD. 
 
 
 
 
 
 
Roberta Adams, M.Sc., P.Geo. 
Senior Geoscientist 
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APPENDIX B:  COVARIATE RASTER DESCRIPTIONS 

All covariate rasters were generated using default parameters in SAGA GIS except for the 
following:  

Height Above Channel (HACH) 

A channel network raster was developed as the input to generate the height above channel and 
Channel Network Base Level. A simple sensitivity analysis was conducted to assess which 

channel network parameters generated the best height above channel raster for model 

performance. An initiation threshold of 20,000 was selected and a minimum segment length of 
10 (map units, 250 meters) was selected. 

Topographic Position Index (TPI) 

TPI was calculated with multiple different radiuses, 500 m, 1000 m, 2000 m, 5000 m. To create 

TPI rasters with large radius, the resolution of the DEM was decreased to one hectare with a 

spatial averaging method. The TPI raster was created at the hectare scale and then sub-

sampled back to 25-meter resolution with a nearest neighbours’ method. This was done to 
reduce the computational requirement of these layers.  

Multi-scale Topographic Position Index (MSTPI) 

The implementation calculates the Topographic Position Index (TPI) for different scales and 
integrates these into one single grid. The hierarchical integration is achieved by starting with 

the standardized TPI values of the largest scale, then adding standardized values from smaller 
scales where the (absolute) values from the smaller scale exceed those from the larger scale.  

Multi-scale Topographic Position Index (MSTPI) was generated by calculating TPI at three scales. 
Two MSTPI rasters were generated, the first had used scales between 8 and 40 grid cells and 

the second used scales between 40 and 200 grid cells.   
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APPENDIX C:  DOMAIN TABLES 

The domain tables used in this study are preliminary and does not represent a final 
classification. The domain tables will be further refined in future studies.   

Broad Landform 

Code Short Name Description 

Eroding Upland Eroding Upland 
Continuous areas of erosion and scour such as mountains, hills and 
plateaus dominated by bedrock, veneers and blankets. 

Valley Fill  Valley Fill  

Regions of thick, unconsolidated sediment accumulation in the 
landscape, and characterized by extensive depositional landforms. 
Extensive in lowlands, depressions, and northern plains within B.C. In 
the Study Area, these areas are dominated by alluvium (river 
deposits) and sediments deposited by glacial ice, glacial lakes, and 
glacial meltwater. They include thick materials reworked by gravity 
and wind such as eolian veneers, dunes and landslide deposits. Along 
valley side walls the valley fill category includes materials deposited 
in fans, cones, and aprons where steep slopes and tributary valleys 
join mainstem valley fill.    

Not Mapped Not Mapped  

Developed for this study. Constructional landforms based on Howes and Kenk (1997). Subject to edits 
following model results and subsequent work. 

 

Landform Subclass 

Code Short Name Description 

Coastal Coastal Landforms 

Wave, tidal and wind deposited and reworked sediments. 
Beaches, dunes, estuaries, cliffs typically below 100m 
elevation. 

Large Landslide 
Large Landslide 
Features 

Large mass movement features such as landslides, rockslides, 
rock glaciers, slumps and other mass movement features. 
These include the head scarp, transportation zone and 
runout zone/deposit. 

Scarp Scarp Slopes 

Steep scarps cut into thick surficial materials, often actively 
eroding and slumping. Often exposing sequences of deposits 
or relic environments. Can be found at the boundary of 
active geological processes. 

River River Landforms 
River landforms, flat lying running water deposits with scarps 
and terraces formed in Holocene times. These are also called 
fluvial landforms and alluvium. 
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Code Short Name Description 

Fan Delta Fans and Deltas 
Gently sloping landforms found where side valleys meet 
larger valleys or waterbodies. Formed in Holocene by flowing 
water and waves. 

Cone Apron 
Cones Aprons and 
Talus Slopes 

Cones, aprons and talus slopes deposited from rapid mass 
movement and gully processes such as rock fall, debris flows 
and slides. Commonly coarse textured, bedrock related 
angular materials. Typically, on active Holocene landforms. 

Organic Palustrine 
Organic and 
Palustrine 
Depressions 

Wetlands. Holocene organic and fine sediment 
accumulations in basins and lowlands. Typically, in areas of 
high-water table or with stagnant to sluggish water flow. 

Ablation 
Ablation and 
Meltwater Landforms 

Areas of glacial ablation where stagnant ice and glacial 
meltwater formed hummocky coarse textured landforms. 
This includes kames, eskers, drumlins, and kettled 
topography. High energy and ice contact depositional 
environments. 

Glaciofluvial 
Glaciofluvial 
Landforms 

Glaciofluvial meltwater deposited fans, terraces and planes 
deposited mainly by flowing water from glacial melt. 

Glaciolacustrine 
Glaciolacustrine 
Landforms 

Stagnant water deposited fine textured flats and blankets. 

Marine Flats 
Marine Flats 
Landforms 

Deeper water deposited glaciomarine sediments. Typically, 
low in coarse fragments content. Lower energy depositional 
environment. Found below the marine limit (isostatic 
rebound). 

Glacial Till Glacial Till Landforms 
Thick, unsorted ice deposited sediments commonly 
undulating or gently sloping. 

Thick Glacial Fill Thick Glacial Fill 

10s to 100s of meters of glacial infilling representing multiple 
glacial stages. Complex stratigraphy documented in the 
literature. Horizontally variable sediments from glacial 
reworking of deposits from proglacial and older glacial steads 

Other Missing Category 

This category is temporary while the domain list is being 
finalized. Use this category when all others don't fit, and the 
domain table needs to be expanded. Use the comment field 
to elaborate. 

Developed for this study. Adapted from Todd and Filatow (2024). 
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Surficial Material 

Code Short Name Description 

Till Till Materials deposited directly from glaciers. 

Colluvium Colluvium Products of mass wasting. 

Fluvial Fluvial River deposits. 

Glaciofluvial Glaciofluvial Ice contact fluvial materials. 

Glaciolacustrine Glaciolacustrine Ice contact lacustrine materials. 

Marine Marine Marine sediments; includes wave deposits. 

Eolian Eolian Material deposited by wind action. 

Organic Organic Accumulation/decay of vegetative matter. 

Undifferentiated  Undifferentiated  Layered sequence; three materials or more. 

Not Mapped Not Mapped  

Modified from Table 2.5 of Howes and Kenk (1997) for this study.  

 

Surface Expression 

Code Short Name Description 

Fan  Fan  
Sediment deposited in a fan or cone shape <25% 
slope. 

Cone  Cone  Sediment deposited in cone shape >25% slope. 

Plane Plane or Terrace Sediment with a unidirectional surface <5% slope. 

Scarp  Scarp  
Erosional slopes cut into thick sediments typically 
>50% slope. 

Undulating  Undulating  
Sediment deposited in multidirectional hillocks and 
hollows with <25% slopes. 

Hummocky Hummocky or Ridged  
Sediment deposited in multidirectional hillocks and 
hollows with >25% slopes. 

Not Mapped Not Mapped  

Modified from British Columbia (2010), based on Howes and Kenk (1997). 
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Aquifer Type 

Code Short Name Description 

Type 1a Type 1a 
Predominantly unconfined fluvial or glacio-fluvial sand and gravel 
aquifers found along major rivers of higher stream order with the 
potential to be hydraulically influenced by the river. 

Type 1 Type 1b and 1c 

Predominantly unconfined fluvial or glacio-fluvial sand and gravel 
aquifers found along rivers of moderate stream order (1b) with the 
potential to be hydraulically influenced by the river (1b), or along 
lower order (< 3-4) streams in confined valleys with relatively 
undeveloped floodplains, where aquifer thickness and lateral extent 
are more limited (1c). 

Type 2 Type 2 
Predominantly unconfined deltaic sand and gravel aquifers are 
commonly found in deltas where a stream or smaller river flows into a 
standing body of water. 

Type 3 Type 3 

Alluvial or colluvial fan sand and gravel aquifers typically occur at or 
near the base of mountain slopes, either along the side of valley 
bottoms, or if formed during the last period of glaciation, raised above 
the valley bottoms. 

Type 4 Type 4 

Sand and gravel aquifers generally formed near or at the end of the 
last period of glaciation. 
 

This category includes both confined and unconfined aquifers. 
Landforms and materials associated with glacio-fluvial outwash, ice 
contact deposits and glacio-marine environments near the coast. 

Not Applicable Not Applicable  

Not Mapped Not Mapped Examples include ice or lakes 

Adapted from Province of British Columbia (2016). 

 
Thickness Class 

Code Short Name Description 

None None: 0-10cm None/ very thin veneer. 

Thin Thin: 10-100cm Veneer. 

Medium Medium: 100-300cm Blanket. 

Thick Thick: 3-30m Thick blankets and shallow constructional landforms. 

Very Thick Very Thick: >30m 
Constructional landforms such as terraces, planes, fans, 
hummocky glacial deposits and scarps in thick surficial 
materials. 

Not Applicable Not Applicable  

Not Mapped Not Mapped  

Developed for this study. Adapted from Howes and Kenk (1997). 
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Material Texture 

Code Short Name Description 

Very Fine Texture Very Fine Texture Silts and clays with low coarse fragment content. 

Fine Texture Fine Texture Silt and clay loams with low coarse fragment content. 

Medium Texture Medium Texture 
Silt and clay loams with high coarse fragment content 
up to 70%. 

Coarse Texture Coarse Texture Sands and gravels with <70% coarse fragments. 

Very Coarse Texture Very Coarse Texture >70% coarse fragments. 

Not Applicable Not Applicable  

Not Mapped Not Mapped  

Developed for this study. Existing texture classes for soils and rooting particle size are for field surveys 
and not easily mapped by image interpretation. 

 

Sorting Class 

Code Short Name Description 

Well Sorted Well Sorted 
Particles of the same size. Commonly wind or water 
deposited (e.g., Eolian fine sand or Glaciolacustrine silt). 

Moderately sorted  Moderately sorted  

Particle size varies moderately. Typically deposited by higher 
energy water or from a consistent bedrock source (e.g., 
glaciofluvial sands and gravels, or till derived from granitic 
bedrock). 

Poorly sorted  Poorly sorted  
Particles size varies widely (e.g., diamicton glacial till ranging 
from clay to boulders). 

Not Applicable Not Applicable  

Not Mapped Not Mapped  

Developed for this study. 
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