WTN 82388 - Production Well - 82E032224

WTN 82389- Test Hole #1 - 82E 032 224

Dernon - Kamloops

Calas Groundwater Consulting Led.

Water Supply and Environmental Assessments

#### PRIVILEGED AND CONFIDENTIAL INFORMATION

April 11, 2001 File Reference: NRC8Prod.doc

#### REPORT OF FINDINGS

### DOMINION RADIO ASTROPHYSICAL OBSERVATORY GROUNDWATER DEVELOPMENT PROGRAM CONSTRUCTION OF 8-INCH PRODUCTION WELL

Prepared for: The National Research Council of Canada

Attn: Bruce Veidt

Report Prepared by: Kala Groundwaten Consulting Ltd.

Per. Columbia Larry C. Topp. P. Geo. Hydrogeologist

Distribution: 2 Copies National Research Council 1 Copy Kala Files

Reviewed by:

Paul Blackett, A.Sc.T. Environmental Technologist

🗆 #3 - 3107A - 31st Avenue, Vernon, B.C. VIT 2G9 . Tel: (250) 545-1720 Fax: (250) 545-1720 E-mail: Kalapal@mindlink.net

#207 - 220 4th Avenue, Kamloops, B.C. V2C 3N6 . Tel: (250) 372-9194

Fax: (250) 372-9398 E-mail: Kalapac@kamloops.net

# RECEIVED

DEC 2 0 2004

PENTICTON

## TABLE OF CONTENTS

|                |                                                  | Page |
|----------------|--------------------------------------------------|------|
| TABLE OF CON   | TENTS                                            | (i)  |
| LIST OF FIGURE | ES                                               | (ii) |
| LIST OF TABLE  | S                                                | (ii) |
|                |                                                  |      |
| SECTION 1.0    | INTRODUCTION                                     | 1    |
| SECTION 2 0    | PACKCDOIND                                       | 2    |
| SECTION 2.0    | Site Description                                 | 2    |
| 2.1            |                                                  | 2    |
| 2.2            | Existing Water Wells                             | 2    |
| SECTION 3.0    | DESCRIPTION OF STUDY PROGRAM                     | 5    |
| 3.1            | Drilling and Well Completion                     | 5    |
| 3.2            | Aquifer Testing                                  | 5    |
|                |                                                  |      |
| SECTION 4.0    | PROGRAM FINDINGS                                 | 6    |
| 4.1            | Drilling                                         | 6    |
| 4.2            | Well Completion                                  | 6    |
| 4.3            | Results of Pumping Test                          | 6    |
| 4.4            | Water Quality                                    | 6    |
| SECTION 5.0    | DISCUSSION OF RESULTS                            | 9    |
| 5 1            | Sustainable Safe Vield of 8 inch Production Well | 0    |
| 5.1            |                                                  | 9    |
| 5.2            | Pumping Level Projections                        | 10   |
| SECTION 6.0    | SUMMARY AND CONCLUSIONS                          | 11   |
| SECTION 7.0    | RECOMMENDATIONS                                  | 13   |

# APPENDICES

- A Report Figures
- B Pumping Test Data
- C Water Quality Analysis
- D Driller's Lithologs and Sieve Analysis

## LIST OF FIGURES (Appendix A)

- FIGURE 1 Index Map
- FIGURE 2 Surficial Geology
- FIGURE 3 Water Well Location Plan
- FIGURE 4 Well Completion Diagram

#### LIST OF TABLES

|         |                                     | Page |
|---------|-------------------------------------|------|
| TABLE 1 | Testhole No. 1 – Lithologic Summary | 5    |
| TABLE 2 | Testhole No. 2 – Lithologic Summary | 5    |
| TABLE 3 | Summary of Water Quality            | 7    |
| TABLE 4 | Pumping Level Projections           | 10   |

#### 1.0 INTRODUCTION

The present program of water well construction and testing has been carried out at the request of the National Research Council of Canada (*NRC*) to develop an 8-inch production well for *NRC*'s Dominion Radio Astrophysical Observatory (*DRAO*) site, located along White Lake Road, near Penticton, B.C. (see Figure 1). The new well will be used to augment the existing water supply obtained from a large diameter dug well. Verbal confirmation to proceed with the well completion program was provided during the latter part of January, 2001, by Mr. Bruce Veidt, of the National Research Council.

The existing source of water supply at the Observatory is obtained from a large diameter dug well completed to a depth of 4.64 metres (15.2 metres) below ground level. The well has been used for both potable and irrigation water during past years. Based on a pumping test program conducted under the supervision of Kala Groundwater Consulting Ltd. (*Kala*) in November, 2000, a safe yield projection for this well was 75 USgpm. Because of the shallow nature of the source however, some concerns have been expressed regarding water quality and also, the reliability of the source during warm dry periods. The present groundwater development program has been carried out based to a large extent on recommendations contained in *Kala*'s water supply evalution report dated December 4, 2000.

Following the completion of an unsuccessful testhole, the present program involved the drilling of an 8inch (203 mm) diameter production well, at the second test drilling site. The new well is completed with 10 feet (3.0 metres) of 8-inch telescopic well screen, set opposite an aquifer comprised of medium to coarse grained sand with some gravel. Upon completion of the well, a 24-hour pumping test was conducted and water samples collected for a chemical and bacteriological analysis. The following report outlines the nature of the drilling and testing program and provides a discussion of the results. In addition, recommendations are made with respect to a safe pumping rate, pump setting and water level monitoring to evaluate long-term performance of the well and aquifer. In the section which follows, a brief account of the existing conditions is provided. Detailed information including water quality, the driller's litholog, sieve analysis and pump test data is attached to the Appendices of this report.

### 2.0 BACKGROUND

#### 2.1 Site Description

The Observatory site is located along White Lake Road approximately 5 kilometers southwest of Okanagan Falls. Access cannot be gained directly to the site from Okanagan Falls because of the mountainous upland area, including Mount McLellan and Mount Hawthorne, which separates the Okanagan and White Lake valley systems.

With respect to topographic expression the site is situated on a bench area which occurs at an average elevation of 570 metres AMSL. The bench level has been formed by glacial outwash and extends from the upland area to the east, in a southwest direction towards White Lake. Drainage is provided by Keains Creek which flow from north to south near the access gate and then eastward along the south perimeter of the property. There is at least one tributary channel to Keains Creek which is located east of the building complex. Along the main drainage course of Keains Creek, the surface gradient slopes towards the creek. Beyond the site, Keains Creek continues its drainage course a considerable distance south and east towards Mahoney Lake.

Based on a surficial geology map (see Figure 2), the unconsolidated deposits overlying bedrock at the site are comprised of glacial-fluvial material formed by outwash from receding glacial ice masses. This type of material is generally comprised of sand and gravel with varying amounts of silt. The depth of these deposits at the site is unknown but some of the former geotechnical boreholes at the Observatory have been drilled to a depth of 48 feet (14.6 metres) without encountering bedrock.

#### 2.2 Description of Existing Well

The existing well is a large diameter dug well completed to a depth of 4.64 metres (15.2 metres) below ground level. The well is constructed with 1.2-metre diameter cement culvert and very likely a gravel envelop has been placed around the outside of the cement cribbing. It is covered with a cement lid and access is gained through a steel manhole cover. The well is used for both potable and irrigation water at the Observatory. Previous bacteriological tests show that the water is acceptable with respect to coliform counts.

A pumphouse facility, which houses a centrifugal lift pump and a large storage tank (1000 Imperial gallons plus) has been constructed immediately north of the well. Water is fed to the building complexes and irrigation system from the storage tank, which is pressurized.

#### 3.0 DESCRIPTION OF PRESENT PROGRAM

#### 3.1 Drilling and Well Completion

Based on competitive price and availability, Robbins Water Well Drilling of Okanagan Falls, B.C. was selected for the drilling project. All of the drilling was conducted with a cable tool drilling rig, using 8-inch casing. With this type of drilling equipment, the casing is advanced as drilling proceeds, and the nature of the subsurface material is determined by examining drill cuttings lifted to surface with a bailer.

During the exploratory program it required the drilling of two testholes before favourable conditions, suitable for the completion of a production well, were encountered. At the site of Testhole No. 1, drilled northwest of the existing pumphouse facility (see Figure 3 for testhole locations), the majority of the subsurface material encountered consisted of fine silty sand, which was too fine for the installation of a well screen and proper development of a well. At the second site, a water-bearing zone comprised of medium to coarse sand and gravel was encountered and a production well completed. After installing a well screen assembly, designed on the basis of sieve analyses, the casing was pulled back to expose the screens and the well was development by surging and pumping the fines to waste.

#### 3.2 Aquifer Testing

In order to evaluate the safe yield of the new well, a 24-hour pumping test was conducted starting on March 24<sup>th</sup>, 2001. Pump testing services were provided by Robbins Water Well Drilling, working under the supervision of *Kala*.

During the test, water pumped from the new 8-inch test well was conveyed through solid 4-inch PVC pipe and discharged to waste onto sloping terrain, which conducted the flow of water southward from the site. The discharge rate was monitored using a conventional circular orifice meter and water levels in the production well were measured with an electric well sounder. Near the end of the pumping interval, water samples were obtained and forwarded to Caro Environmental Services for a water quality analysis. Upon cessation of pumping, recovery was measured in the production well for a two-hour period.

#### 4.0 PROGRAM FINDINGS

#### 4.1 Drilling

#### 4.1.1 Testhole No. 1

As noted in the previous section, it required the drilling of two testholes before favourable conditions, suitable for the completion of a production well, were encountered. At the site of Testhole No. 1, the majority of the subsurface material consisted of fine silty sand, which was too fine for the installation of a well screen and proper development of a well. A summary of the basic hydrogeologic units encountered in TH#1 is as follows:

| Table 1 – Testhole No. 1 – Lithologic Summary |                                           |  |  |  |  |
|-----------------------------------------------|-------------------------------------------|--|--|--|--|
| Depth Interval                                | Lithologic Description                    |  |  |  |  |
| 0 to 21 feet                                  | Medium to coarse grained sand with gravel |  |  |  |  |
| 21 to 96 feet                                 | Fine silty sand                           |  |  |  |  |
| 96 to 139 feet                                | Grey clay                                 |  |  |  |  |
| 139 to 142 feet                               | Bedrock, siltstone                        |  |  |  |  |

During the drilling of TH#1, the 8-inch casing was driven to a total depth of 139 feet. Upon completion of the unsuccessful testhole, the contractor made an attempt to pull the casing but because of wet ground conditions around the site, it proved impossible at the time. The casing has been capped and left in place, with future plans to return and pull the casing when ground conditions are more suitable.

#### 4.1.2 Testhole No. 2

At the second location, conditions were favourable for the completion of a production well. A summary of the basic hydrogeologic units encountered in TH#2 is shown in Table 2.

| Table 2 – Testhole No. 2 – Lithologic Summary |                                                               |  |  |
|-----------------------------------------------|---------------------------------------------------------------|--|--|
| Depth Interval                                | Lithologic Description                                        |  |  |
| 0 to 20 feet                                  | Medium to coarse grained sand and gravel                      |  |  |
| 20 to 76 feet                                 | Fine brown sand                                               |  |  |
| 76 to 89 feet                                 | Medium to coarse sand with some angular gravel, water-bearing |  |  |
| 89 to 90 feet                                 | Grey clay                                                     |  |  |

Kala Groundwater Consulting Ltd.

#### 4.2 Well Completion

Following completion of the exploratory drilling to the base of the aquifer (89 feet), a production well was completed with 10 feet (3.0 metres) of 8-inch (203 mm) telescopic well screen set from 77.8 to 88.3 feet (23.7 to 26.9 metres) below surface as shown in Figure 4. In addition a 2- foot riser and "Figure K" packer is attached to the top of the well screens, bringing the top of the assembly to 75.8 feet (23.1 metres) below ground level. Based on results of the sieve analyses, the screen slot size selected consists of #30 slot (30 thousandths of an inch openings) set from 77.8 to 83.1 feet and #20 slot set from 83.1 to 88.3 feet below surface. Following installation of the well screen assembly, the well was developed by surging, while pumping the fines to waste until a sand/silt free condition was achieved.

#### 4.3 Results of Pumping Test

Results of the pumping and recovery tests have been plotted on semi-log graphs of drawdown versus time (residual drawdown versus time for recovery) and an interpretation of the aquifer parameters and sustainable yield made on this basis. Detailed pumping test data and plots are included in Appendix B of this report.

While pumping at a constant rate of 245 USgpm, the total drawdown observed in the new 8-inch production well was 22.28 feet (6.79 metres) after 24 hours. This represents only 33.5 percent of the total available drawdown in the well. It was also noted that after 16 minutes of pumping, steady-state conditions were achieved were the pumping rate is balanced by the rate of recharge to the aquifer and no further drawdown is observed.

Following cessation of pumping the 8-inch well recovered to within 99 percent of full recovery in 120 minutes. A determination and discussion of safe sustainable yield for the 8-inch production well is included in Section 5.0 of this report.

#### 4.4 Water Quality

A copy of the certificate of analysis for water quality is attached to the Appendices of this report. Based on the results, the water quality for all parameters tested meets the "Guidelines for Canadian Drinking Water Quality" with respect to all health related parameters (MAC). A comparison of water quality for the new well and the existing large diameter dug well is shown in Table 3.

Groundwater Consulting Ltd.

| Table 3 – Summary of Water Quality                                                                         |                            |                      |                                         |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-----------------------------------------|--|--|
| Parameter                                                                                                  | New 8-Inch<br>Well         | Existing Dug<br>Well | *GCDW0                                  |  |  |
| Alkalinity (Total) mg/L as CaCO <sub>3</sub>                                                               | 293                        | 292                  | -                                       |  |  |
| Chloride mg/L                                                                                              | 15.5                       | 13.8                 | 250                                     |  |  |
| Coliform (Fecal) colonies/100ml                                                                            | 0                          | 0                    | 0                                       |  |  |
| Coliform (Total) colonies/100ml                                                                            | 0                          | 0                    | <10                                     |  |  |
| Color (True) Color Units                                                                                   | <5                         | <5                   | < 15                                    |  |  |
| Conductivity umhos/cm                                                                                      | 636                        | 675                  | -                                       |  |  |
| Cyanide mg/L                                                                                               | <0.010                     | <0.010               | 0.2                                     |  |  |
| Dissolved Solids (Total) mg/L                                                                              | 441                        | 407                  | 500                                     |  |  |
| Fluoride mg/L                                                                                              | 1.2                        | 1.2                  | 1.5                                     |  |  |
| Hardness (Total) mg/L as CaCO <sub>3</sub>                                                                 | 275                        | 274                  | -                                       |  |  |
| Nitrate mg/L as N                                                                                          | 0.09                       | 0.16                 | 10                                      |  |  |
| Nitrite mg/L as N                                                                                          | < 0.01                     | <0.01                | 1.0                                     |  |  |
| pH                                                                                                         | 7.4                        | 8.0                  | 6.5-8.5                                 |  |  |
| Sulphate mg/L                                                                                              | 69                         | 60                   | 500                                     |  |  |
| Turbidity N.T.U.                                                                                           | 170                        | 0.15                 | 1                                       |  |  |
| TOTAL METALS (mg/L)                                                                                        |                            |                      |                                         |  |  |
| Aluminum                                                                                                   | 3.8                        | <0.2                 | -                                       |  |  |
| Arsenic                                                                                                    | <0.01                      | <0.01                | 0.054                                   |  |  |
| Barium                                                                                                     | 0.12                       | 0.06                 | 1.0                                     |  |  |
| Boron                                                                                                      | <0.1                       | <0.1                 | 5.0                                     |  |  |
| Cadmium                                                                                                    | < 0.0002                   | <0.0002              | 0.005                                   |  |  |
| Calcium                                                                                                    | 62.9                       | 64.3                 | ••••••••••••••••••••••••••••••••••••••• |  |  |
| Chromium                                                                                                   | <0.01                      | <0.01                | 0.05                                    |  |  |
| Copper                                                                                                     | <0.01                      | <0.01                | < 1                                     |  |  |
| Iron                                                                                                       | 5.5                        | < 0.03               | 0.3                                     |  |  |
| Lead                                                                                                       | 0.004                      | 0.001                | 0.01                                    |  |  |
| Magnesium                                                                                                  | 28.6                       | 27.5                 | -                                       |  |  |
| Manganese                                                                                                  | 0.190                      | < 0.005              | 0.05                                    |  |  |
| Mercury                                                                                                    | <0.00005                   | <0.00005             | 0.001                                   |  |  |
| Molybdenum                                                                                                 | <0.03                      | <0.03                | -                                       |  |  |
| Potassium                                                                                                  | 1.98                       | 1.87                 | -                                       |  |  |
| Sodium                                                                                                     | 42.4                       | 36.9                 | 200                                     |  |  |
| Uranium                                                                                                    | 0.0118                     | 0.0115               | 0.02                                    |  |  |
| Zinc                                                                                                       | 0.54                       | 0.007                | < 5.0                                   |  |  |
| <ul> <li>* Guidelines for Canadian Drinking W</li> <li>- No limits established at the present t</li> </ul> | ater Quality<br>ime Shaded | l cells – above AO   |                                         |  |  |

Upon inspection, the two water qualities are very similar with respect to most parameters. The main difference relates to some of the metal concentrations in the new well, including iron, manganese and alluminum, which all exceed the aesthetic objectives (AO). In Kala's opinion the reason for the elevated concentrations of these parameters is the turbidity in water at the time of sampling, which was very high

# Kala

Groundwater Consulting Ltd.

(170 NTU). It was noted that during the latter stages of the pumping test, the water became a little milky in color. Also in a discussion with Caro Environmental, the sample contained a fair amount of sediment in the bottle, but there was no yellow or brown color, meaning that the high readings for iron and manganese shown in the Certificate of Analysis, are probably miss-leading and not totally accurate, because of the high turbidity in the sample. *Kala* suggests that the drilling contractor be contacted and that some further development be conducted with the new well prior to final pump installation.

#### 5.0 DISCUSSION OF RESULTS

#### 5.1 Sustainable Safe Yield of 8-Inch Production Well

The long term yield of a production well is dependent upon a number of factors, the most important being the hydraulic properties of the aquifer (transmissivity and storativity), availability of recharge to the aquifer and the number of, distance between and pump rate of other wells in the same aquifer.

The long term yield of the new 8-inch production well at the Dominion Radio Astrophysical Observatory over a 20 year period assuming no interference from other wells and 70 percent consumption of available drawdown may be expressed by the following:

 $Q_{20} = 0.70 \text{ x Sa}(Q)/(S_{100} + 5\Delta S)$ 

Where

 $Q_{20} = 20$  year continuous pumping rate Sa = total available drawdown (66.7 feet) Q = aquifer test rate (245 USgpm)  $S_{100} =$  drawdown in pumped well at t=100 minutes (22.18 feet)  $\Delta S =$  drawdown over one log cycle (0.10 feet)

Applying this formula  $Q_{20} = 500$  USgpm.

This is a theoretical safe yield and other factors must be taken into consideration. For example, it is important to note that the well screen assembly as installed is designed to transmit 200 USgpm at an entrance velocity of 0.1 feet per second, which is recommended. Secondly, during the 24-hour pumping test, while pumping at a constant rate of 245 USgpm, the water became a little milky in color near the latter stages of the test. We do however expect that the milky color will disappear with extended pumping, particularly if the pumping rate does not exceed 200 USgpm.

Finally seasonal fluctuations in the water table must be taken into consideration. During extended dry spells, we can expect a decline in the water table elevation or static water level in the well, which of course will mean a decrease in the safe yield projection. We do not expect that the safe yield will decline below 200 USgpm.

# Kala

Groundwater Consulting Ltd.

#### 5.2 Pumping Level Projections

In order to aid in pump design and selection, *Kala* provides a series of pumping level projections in Table 4 which follows. These projections are all based on continuous pumping for a seven day period.

| Table 4 – Projected Pumping Levels |                     |                                     |  |  |
|------------------------------------|---------------------|-------------------------------------|--|--|
| Pumping Rate<br>(USgpm)            | Drawdown in<br>Well | Pumping Level from top<br>of casing |  |  |
| 50                                 | 4.6 feet            | 14.7 feet                           |  |  |
| 100                                | 9.2 feet            | 19.3 feet                           |  |  |
| 200                                | 18.2 feet           | 28.3 feet                           |  |  |

At the time of preparing this report the top of casing was 1.0 feet above ground level at the site of the new 8-inch production well.

It is currently recommended that a pump setting for the new well be 65 to 70 feet below the top of casing. The pump motor should not extend inside the well screen assembly. All depths including the top of the screen assembly should be confirmed by the pump contractor prior to installation.

Kala Groundwater Consulting Ltd.

#### 6.0 SUMMARY AND CONCLUSIONS

Based on the results of the present groundwater exploration and evaluation program, *Kala* provides the following conclusions for the Clients consideration.

- The present program of water well construction and testing has been carried out at the request of the National Research Council of Canada (NRC) to develop an 8-inch production well for NRC's Dominion Radio Astrophysical Observatory (DRAO) site, located along White Lake Road, near Penticton, B.C.
- It required the drilling of two exploratory testholes before favourable conditions were encountered at the second location. A summary of the basic hydrogeologic units encountered in TH#2 is shown in Table 2.

| Table 2 – Testhole No. 2 – Lithologic Summary |                                                               |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------|--|--|--|
| Depth Interval                                | Lithologic Description                                        |  |  |  |
| 0 to 20 feet                                  | Medium to coarse grained sand and gravel                      |  |  |  |
| 20 to 76 feet                                 | Fine brown sand                                               |  |  |  |
| 76 to 89 feet                                 | Medium to coarse sand with some angular gravel, water-bearing |  |  |  |
| 89 to 90 feet                                 | Grey clay                                                     |  |  |  |

- Following completion of the exploratory drilling to the base of the aquifer (89 feet), a production well was completed with 10 feet (3.0 metres) of 8-inch (203 mm) telescopic well screen set from 77.8 to 88.3 feet (23.7 to 26.9 metres) below surface as shown in Figure 4. In addition a 2- foot riser and "Figure K" packer is attached to the top of the well screens, bringing the top of the assembly to 75.8 feet (23.1 metres) below ground level.
- During the 24-hour pumping test, while pumping at a constant rate of 245 USgpm, the total drawdown observed in the new 8-inch production well was 22.28 feet (6.79 metres) after 24 hours. This represents only 33.5 percent of the total available drawdown in the well. It was also noted that after 16 minutes of pumping, steady-state conditions were achieved were the pumping rate is balanced by the rate of recharge to the aquifer and no further drawdown is observed.

- The new well has a theoretical safe yield of 500 USgpm. The well screen however is designed to transmit 200 USgpm at an entrance velocity of 0.1 feet per second, which is the recommended maximum.
- A copy of the certificate of analysis for water quality is attached to the Appendices of this report. Based on the results, the water quality for all parameters tested meets the "Guidelines for Canadian Drinking Water Quality" with respect to health related parameters. The water did however exceed the aesthetic objectives (AO) with respect to some of the metal parameters including iron, managanese, alluminum and turbidity. In Kala's opinion the reason for the elevated concentrations of these parameters is the turbidity in water at the time of sampling, which was very high (170 NTU). It was noted that during the latter stages of the pumping test, the water became a little milky in color. Also in a discussion with Caro Environmental, the sample contained a fair amount of sediment in the bottle, but there was no yellow or brown color, meaning that the high readings for iron and manganese shown in the Certificate of Analysis, are probably miss-leading and not totally accurate, because of the high turbidity in the sample. Kala suggests that the drilling contractor be contacted and that some further development be conducted with the new well prior to final pump installation.

#### 7.0 RECOMMENDATIONS

The following recommendations regarding the new 8-inch production well are made for the Clients consideration.

- Because of the high turbidity in the water, *Kala* recommends that the drilling contractor be contacted and that some further development be conducted with the new well prior to final pump installation. Following re-development, a water sample should be obtained with the drilling contractor's submersible pump and analyzed for iron, manganese, turbidity and alluminum.
- *Kala* is recommending that a pump capable of delivery somewhere between 50 and 200 USgpm be installed in the new 8-inch production well.
- It is currently recommended that a pump setting for the new well be 65 to 70 feet below the top of casing. The pump motor should not extend inside the well screen assembly. All depths including the top of the screen assembly should be confirmed by the pump contractor prior to installation.
- In order to aid in pump design and selection, *Kala* provides a series of pumping level projections in Table 4, which follows. These projections are all based on continuous pumping for a seven day period.

| Table 4 – Projected Pumping Levels |                     |                                     |  |  |
|------------------------------------|---------------------|-------------------------------------|--|--|
| Pumping Rate                       | Drawdown in<br>Well | Pumping Level from top<br>of casing |  |  |
| 50                                 | 4.6 feet            | 14.7 feet                           |  |  |
| 100                                | 9.2 feet            | 19.3 feet                           |  |  |
| 200                                | 18.2 feet           | 28.3 feet                           |  |  |

• At no time should the new well be backwashed (allowing a sudden surge of water back through the drop pipe and pump). This is because of the fine sand component comprising the aquifer and consequently it is recommended that a check valve be installed above the pump;

- The aquifer is partially protected from surface contamination by layers of silty fine sand, but we do recommend that a well head protection plan be adopted. Owners of land located within the well capture zone should be informed, and they should be encouraged to take all measures necessary to contain any large volumes of potential contaminants;
- Finally with respect to the new production well, provision should be made to include a water meter for measuring production and also allowance should be made for measuring pumping and non-pumping water levels in the well.

APPENDIX A

**Report Figures** 

ī









**Figure 4** Dominion Radio Astrophysical Observatory Well Completion Diagram

# APPENDIX B

Ì

Pump Test Data

Nation Research Council

\*

1

7

谱

New 8-Inch Well

| PUMPTEST (Drawdown)                                                                                            |                                     | New 8-Inch Pro           | NRC - Dominion Radio Astrophysical Observatory<br>duction Well - (Testhole #2)                                                                        |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date test started: March<br>Time test started: 11:30<br>Ave. pumping rate: 245 t<br>Pre-test water level: 3.07 | 24th; 2001<br>AM<br>JSgpm<br>metres |                          | Reference Point: Top of casing<br>Height of ref. point: 0:30 metres above grade<br>Depth of well: 26.5 metres<br>Screen Interval: 23.5 to 26.5 metres |
| Time (t) since<br>pumping started<br>in minutes                                                                | Depth to<br>water in<br>metres      | Drawdown<br>in<br>metres | Comments                                                                                                                                              |
| 0                                                                                                              | 3.07                                | 0.00                     |                                                                                                                                                       |
| 1                                                                                                              | 9.55                                | 6.48                     | Pumping rate: 245 Usgpm                                                                                                                               |
| 2                                                                                                              | 9.70                                | 6.63                     | 16.5 inches on 8" x 4" orifice                                                                                                                        |
| 3                                                                                                              | 9.76                                | 6.69                     |                                                                                                                                                       |
| 4                                                                                                              | 9.79                                | 6.72                     |                                                                                                                                                       |
| 6                                                                                                              | 9.80                                | 6.73                     | Water clean after 5 minutes                                                                                                                           |
| 8                                                                                                              | 9.81                                | 6.74                     |                                                                                                                                                       |
| 10                                                                                                             | 9.82                                | 6.75                     | 16.5 "                                                                                                                                                |
| 13                                                                                                             | 9.82                                | 6.75                     |                                                                                                                                                       |
| 16                                                                                                             | 9.825                               | 6.76                     |                                                                                                                                                       |
| 20                                                                                                             | 9.830                               | 6.76                     |                                                                                                                                                       |
| 25                                                                                                             | 9.835                               | 6.77                     |                                                                                                                                                       |
|                                                                                                                | 9.84                                | 6.//                     |                                                                                                                                                       |
| 40                                                                                                             | 9.84                                | 6.//                     |                                                                                                                                                       |
| 50                                                                                                             | 9.83                                | 6.76                     | Durania Data 045 110                                                                                                                                  |
|                                                                                                                | 9.83                                | 6.76                     | Pumping Rate: 245 USgpm                                                                                                                               |
| 100                                                                                                            | 9.00                                | 6.76                     | 16 5"                                                                                                                                                 |
| 120                                                                                                            | 9.03                                | 6.76                     | 10.5                                                                                                                                                  |
| 150                                                                                                            | 9.03                                | 6.76                     |                                                                                                                                                       |
| 190                                                                                                            | 9.05                                | 6.76                     |                                                                                                                                                       |
| 240                                                                                                            | 9.84                                | 6.70                     |                                                                                                                                                       |
| 300                                                                                                            | 9.85                                | 6.78                     |                                                                                                                                                       |
| 380                                                                                                            | 9.85                                | 6.78                     |                                                                                                                                                       |
| 480                                                                                                            | 9.86                                | 6.79                     |                                                                                                                                                       |
| 600                                                                                                            | 9.85                                | 6.78                     |                                                                                                                                                       |
| 780                                                                                                            | 9.86                                | 6.79                     |                                                                                                                                                       |
| 960                                                                                                            | 9.86                                | 6.79                     | Water little milky                                                                                                                                    |
| 1200                                                                                                           | 9.86                                | 6.79                     | Obtain water samples                                                                                                                                  |
| 1440                                                                                                           | 9.86                                | 6.79                     | Pumping rate: 245 Usgpm                                                                                                                               |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
|                                                                                                                |                                     | ~                        |                                                                                                                                                       |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
| ·····                                                                                                          |                                     |                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                 |
|                                                                                                                |                                     |                          |                                                                                                                                                       |
| L                                                                                                              |                                     |                          |                                                                                                                                                       |



Kala Groundwater Consulting Ltd.

\$ \*

i i i

Ĩ.

1

New Well

| PUMPTEST (RECOVERY)                                                                                         |                                           |                                | NRC - Dominion<br>New 8-Inch Well                                                | Radio Astrophysical Observ.<br>- Recovery                   |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| Date test started: March<br>Time test started: 11 30<br>Ave. pumping rate: 245<br>Pre-test water level: 3.0 | i 25th, 2001<br>) AM<br>USgpm<br>7 metres |                                | Reference point:<br>Height of reference<br>Depth of well: 26<br>Top of screen: 2 | Top of casing<br>ce: 0.3 metres<br>i.5 metres<br>3.1 metres |
| Time t' since<br>pumping stopped<br>in minutes                                                              | (1 + 1)/1                                 | Depth to<br>water in<br>metres | Residual<br>Drawdown<br>in metres                                                | Comments                                                    |
| 0                                                                                                           | 1440.0                                    | 9.86                           | 6.79                                                                             |                                                             |
| 1                                                                                                           | 1441.0                                    | 3.51                           | 0.44                                                                             |                                                             |
| 2                                                                                                           | 721.0                                     | 3.32                           | 0.25                                                                             |                                                             |
| 3                                                                                                           | 481.0                                     | 3.27                           | 0.20                                                                             |                                                             |
| 4                                                                                                           | 361.0                                     | 3.22                           | 0.15                                                                             |                                                             |
| 6                                                                                                           | 241.0                                     | 3.19                           | 0.12                                                                             |                                                             |
|                                                                                                             | 181.0                                     | 3.17                           | 0.10                                                                             |                                                             |
| 10                                                                                                          | 1110                                      | 3.1/                           | 0.10                                                                             | ·                                                           |
| 15                                                                                                          | 01.0                                      | 3.10                           | 0.09                                                                             |                                                             |
| 20                                                                                                          | 73.0                                      | 3.15                           | 0.08                                                                             |                                                             |
| 25                                                                                                          | 58.6                                      | 3 14                           | 0.00                                                                             | · · · · · · · · · · · · · · · · · · ·                       |
| 32                                                                                                          | 46.0                                      | 314                            | 0.07                                                                             |                                                             |
| 40                                                                                                          | 37.0                                      | 3 14                           | 0.07                                                                             |                                                             |
| 50                                                                                                          | 29.8                                      | 3.135                          | 0.06                                                                             |                                                             |
| 64                                                                                                          | 23.5                                      | 3.135                          | 0.06                                                                             |                                                             |
| 80                                                                                                          | 19.0                                      | 3.135                          | 0.06                                                                             |                                                             |
| 100                                                                                                         | 15.4                                      | 3.13                           | 0.06                                                                             | *********                                                   |
| 120                                                                                                         | 13.0                                      | 3.12                           | 0.05                                                                             |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                | ·····                                                                            |                                                             |
|                                                                                                             | <br>                                      |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
| • · · · · · · · · · · · · · · · · · · ·                                                                     |                                           |                                |                                                                                  |                                                             |
| ·····                                                                                                       |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |
|                                                                                                             |                                           |                                |                                                                                  |                                                             |

Kala Groundwater Consulting Ltd.



# APPENDIX C

Water Quality Analysis



102 - 3677 Highway 97N Kelowna, B.C. V1X 5C3

Telephone (250) 765-9646 Fax (250) 765-3893

CERTIFICATE OF ANALYSIS

April 10, 2001

National Reserarch Council Canada P.O. Box 248 PENTICTON, BC V2A 6K3 Attention: Ron Casorso

#### Sample ID:

New Production Well. via Kala Groundwater

Date sampled:

March 25/01

Received: March 26/01

| Parameter          |
|--------------------|
| Alkalinity (total) |
| Aluminum (total)   |
| Arsenic (total)    |
| Barium (total)     |
| Boron              |
| Cadmium (total)    |
| Calcium (total)    |
| Chloride           |
| Chromium (total)   |
| Colcur (true)      |
| Conductivity       |
| Copper (total)     |
| Cyanide            |
| Fluoride           |
| Hardness           |
| Iron (total)       |
| Lead (total)       |
| Magnesium (total)  |
| Manganese (total)  |
| Mercury (total)    |
| Molybdenum (total) |

units Result mg/L as CaCO3 2.93 mg/L 3,8 mg/L <0.01 0.12 mg/L mg/L <0.1 <0.0002 mg/L mg/L 62.9 mg/L 15.5 mg/L <0.01 colour units <5 umhos 696 mg/L <0.01 mg/t <0.010 mg/L 1.20 mg/L as CaCO3 275 mg/L 5.50 mg/L 0.004 mg/L 28.6 mg/L 0.190 mg/L <0.00005 mg/L <0.03

...2

PAGE 02

Page 2 National Reserarch Council Canada April 10, 2001 (cont)

sample ID:

New Production Well

| Parameter              | units          | Result                                |
|------------------------|----------------|---------------------------------------|
| Nitrate                | mg/L as N      | 0.09                                  |
| Nitrite                | mg/L as N      | <0.01                                 |
| pH                     | pH units       | · · · · · · · · · · · · · · · · · · · |
| Potassium (total)      | mg/L           | 1.98                                  |
| Sodium (total)         | mg/L           | 42.4                                  |
| Sulphate               | msg/1          | 69                                    |
| Total Dissolved Solids | mg/L           | 441                                   |
| Turbidity              | NTU            | 170                                   |
| Uranium (total)        | mg/L           | 0.0118                                |
| Zinc (total)           | mg/L           | 0,054                                 |
| Total Coliform         | Colonies/100mL | 0                                     |
| Fecal Coliform         | Colonies/100mL | Ő                                     |

Certified by:

CARO Environmental Services Janice M. Fraser, B.Sc., Lab Manager Enclosure FAX (250)493-7767, also cc FAX (250)545-1720, Kala Groundwater Consulting

> THE INFORMATION CONTAINED IN THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.



102 - 3677 Highway 97N Kelowna, B.C. V1X 5C3

Telephone (250) 765-9646 Fax (250) 765-3893

#### CERTIFICATE OF ANALYSIS

November 23, 2000

National Research Council of Canada P.O. Box 248 PENTICTON, BC V2A 6K3 Attention: Ron Casorso

| Sample ID:    | MRC Existing Dug Well, | via Kala Groundwater |
|---------------|------------------------|----------------------|
|               | & Robbins Water Well I | rilling              |
| Date sampled: | Nov. 12/00             | Received: Nov. 14/00 |

| Parameter          | unit.s        | Result   |
|--------------------|---------------|----------|
| Alkalinity (total) | mg/L as CaCO3 | 292      |
| Aluminum (total)   | mg/L          | <0.2     |
| Arsenic (total)    | mg/I.         | <0.01    |
| Barium (total)     | mg/L          | 0.06     |
| Boron              | mg/1.         | <0.1     |
| Cadmium (total)    | mg/L          | <0.0002  |
| Calcium (total)    | mg/L          | 64.3     |
| Chloride           | mg/L          | 1.3.9    |
| Chromium (total)   | mg/l          | <0.01    |
| Colcur (true)      | colour units  | <5       |
| Conductivity       | umhos         | 675      |
| Copper (total)     | mg/L          | <0.01    |
| Cyanide            | mg/L          | <0.010   |
| Fluorido           | mg/L          | 1.2      |
| Hardness           | mg/l as CaCO3 | 274      |
| lron (total)       | mg/L          | <0.03    |
| Lead (total)       | mg/L          | 0.001    |
| Magnesium (total)  | mç3 / J.      | 27.5     |
| Manganese (total)  | mg/L          | <0.005   |
| Mercury (total)    | mg/L          | <0.00005 |
| Molybdenum (total) | mg/L          | <0.03    |

...2

Page 2 National Research Council of Canada November 23, 2000 (cont)

Sample ID:

# MRC Existing Dug Well, via Kala Groundwater

| Parameter<br>Nitrate<br>Nitrate<br>PH<br>Potassium (total)<br>Sodium (total)<br>Sulphate<br>Total Dissolved Solids<br>Turbidity<br>Uranium (total)<br>Zinc (total)<br>Total Coliform | units<br>mg/L as N<br>mg/L as N<br>pH units<br>mg/L<br>mg/L<br>mg/L<br>MTU<br>mg/L<br>mg/L<br>Colonies/100mL | Result<br>0.16<br><0.01<br>8.0<br>1.87<br>36.9<br>60<br>407<br>0.15<br>0.0315<br>0.097<br>0 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Total Coliform<br>Fecal Coliform                                                                                                                                                     | Colonies/100mL<br>Colonies/100mL                                                                             | 0                                                                                           |

Certified by:

CARO Environmental Services Janice M. Fraser, B.Sc., Lab Manager Enclosure FAX (250)493-7767

oc FAX (250)545-1720, Kala Groundwater Consulting

THE INFORMATION CONTAINED IN THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT, ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.



a, 2

# APPENDIX D

Ĭ.

Driller's Lithologs and Sieve Analysis

## National Research Council Dominion Radio Astrophysical Observatory Groundwater Development Program Driller's Lithologs

Depth Interval In feet

Lithologic Description

# <u>TH#1</u>

| 0 - 2.5 ft. | Topsoil                                       |
|-------------|-----------------------------------------------|
| 2.5 - 6     | Tight sand and gravel                         |
| 6 – 10      | Brown sand and gravel with medium sized rocks |
| 10 - 14     | Clean gravel and sand                         |
| 14 - 16     | Brown sand                                    |
| 16 - 18     | Brown sand and gravel, clean                  |
| 18 - 21     | Coarse sand                                   |
| 21 - 31     | Fine silty sand, grey-brown                   |
| 31 - 48     | Fine silty sand, brown                        |
| 48 - 50     | Fine silty sand, dark brown in color          |
| 50 - 60     | Fine brown sand, silty                        |
| 60 – 70     | Fine grey sand, coarser and little cleaner    |
| 70 - 80     | Fine brown sand, silty with few pebbles       |
| 80 - 89     | Fine brown sand, dirty                        |
| 89 - 96     | Fine brown silty sand                         |
| 96 – 107    | Grey clay                                     |
| 107 – 110   | Compact silt                                  |
| 110 – 119   | Grey clay                                     |
| 119 – 126   | Grey clay soft, drilled                       |
| 126 – 133   | Grey clay, firm, drilled                      |
| 133 – 138   | Tight clay, drilled                           |
| 138 - 139   | Tight till, hard                              |
| 139 - 142   | Bedrock, siltstone                            |

(Driller's lithologs - Cont'd)

Depth Interval <u>In feet</u>

Lithologic Description

# TH#2 (Production Well)

| 0 - 2 ft. | Topsoil with gravel                        |
|-----------|--------------------------------------------|
| 2 - 4     | Sand and gravel, brown                     |
| 4 – 9     | Clean brown sand                           |
| 9 – 18    | Coarser sand, brown                        |
| 18 - 20   | Coarser sand with some gravel              |
| 20-22     | Fine brown sand                            |
| 22 - 28   | Fine brown sand, clean                     |
| 28-30     | Fine brown sand, light in color            |
| 30 - 50   | Fine brown sand                            |
| 50 - 65   | Fine brown sand with few pebbles and rocks |
| 65 – 70   | Fine brown sand with broken rocks          |
| 70 – 76   | Fine brown sand with few pebbles           |
| 76 - 80   | Coarse sand with pebbles, clean            |
| 80 - 84   | Clean coarse sand                          |
| 84 89     | Sand clean, finer with few rocks           |
| 89 -      | Grey clay                                  |



NRC

| SIEVE ANAL                | YSIS     |                                         |                                        |                    |                                         |                                       |
|---------------------------|----------|-----------------------------------------|----------------------------------------|--------------------|-----------------------------------------|---------------------------------------|
|                           |          | PROJECT:                                | Dominion Radio A                       | Istro. Observatory |                                         |                                       |
|                           |          | REMARKS:                                | Testhole No. 2                         |                    | _                                       |                                       |
|                           |          | DEPTH:                                  | 78 80 feet                             |                    |                                         |                                       |
|                           |          |                                         |                                        | •                  |                                         |                                       |
| SIEVE OF                  | PENNING  | U.S. SIEVE                              | CUMMULATI                              | /E % RETAINED      | REMARKS                                 |                                       |
| INCH                      | 1000ths" | NO.                                     | WT. RET.                               | % RET.             |                                         |                                       |
|                           |          |                                         |                                        |                    |                                         |                                       |
| 0.005                     | 005      | 1/2 Inch                                | · · · · · · · · · · · · · · · · · · ·  |                    |                                         |                                       |
| 0.265                     | 265      | 0.265                                   |                                        | 0.0                |                                         |                                       |
| 0.187                     | 122      | 4<br>6                                  | 40                                     | 8.1                | +                                       |                                       |
| 0.132                     | 93.7     | 8                                       | 95                                     | 29.2               |                                         |                                       |
| 0.0557                    | 66.1     | 12                                      | 190                                    | 38.3               |                                         | · · · · · · · · · · · · · · · · · · · |
| 0.0469                    | 46.9     | 16                                      | 250                                    | 50.4               |                                         |                                       |
| 0.0331                    | 33.1     | 20                                      | 320                                    | 64.5               |                                         |                                       |
| 0.0234                    | 23.4     | 30                                      | 370                                    | 74.6               |                                         |                                       |
| 0.0165                    | 16.5     | 40                                      | 405                                    | 81.7               |                                         |                                       |
| 0.0098                    | 9.8      | 60                                      | 425                                    | 85.7               |                                         |                                       |
| 0.0059                    | 5.9      | 100                                     | 460                                    | 92.7               |                                         |                                       |
| 0.0029                    | 2.9      | 200                                     | 483                                    | 97.4               |                                         |                                       |
|                           |          | Pan                                     | 496                                    | 100.0              |                                         |                                       |
|                           |          |                                         |                                        | 7                  |                                         |                                       |
|                           |          | Total Wt:                               | 496.0                                  |                    |                                         |                                       |
|                           |          |                                         | <u> </u>                               |                    |                                         | <u></u>                               |
|                           |          |                                         | SIEVE ANA                              | LYSIS PLOT         |                                         |                                       |
| 100                       | 20       |                                         |                                        |                    |                                         |                                       |
| 100                       |          |                                         |                                        |                    |                                         |                                       |
| <b>-</b> 90               | 0.0      |                                         |                                        |                    |                                         |                                       |
| <b>e</b> 80               | 0.0      |                                         |                                        |                    |                                         |                                       |
| <b>i te</b> 70            | D.0      |                                         |                                        |                    |                                         |                                       |
| ି <b>ଝଁ</b> <sub>ସେ</sub> | 10       |                                         |                                        |                    |                                         |                                       |
| 8 × )                     |          |                                         |                                        |                    |                                         |                                       |
|                           |          |                                         |                                        |                    |                                         |                                       |
| <b>1at</b> 40             | D.0 #    |                                         |                                        |                    | jan |                                       |
| ି ଥି ଅ                    | D.0      |                                         |                                        |                    |                                         |                                       |
| E 20                      | D.0 🗮    |                                         |                                        |                    |                                         |                                       |
| <u>ບ</u>                  |          |                                         |                                        |                    |                                         |                                       |
| 1                         |          |                                         |                                        |                    |                                         |                                       |
| (                         | J.0 +    | · • · · · · · · · · · · · · · · · · · · | ······································ |                    |                                         |                                       |
|                           | 0        | 50                                      | 100                                    | 150                | 200                                     | 250                                   |
|                           |          |                                         | Sieve Opennings                        | in Thousandths of  | an Inch                                 |                                       |
|                           |          |                                         | . 0                                    |                    |                                         |                                       |
|                           |          |                                         |                                        |                    |                                         |                                       |

TH#2

| H | #2 |
|---|----|
|   |    |
|   | Н  |



NRC

SIEVE ANALYSIS

INCH

0.265

0.187

0.132

0.0937

0.0661

0.0469

0.0331

0.0234

0.0165

0.0098

0.0059

0.0029

SIEVE OPENNING

1000ths"

265

187

132

93.7

66.1

46.9

33.1

23.4

16.5

9.8

5.9

2.9

PROJECT: Dominion Radio Astro. Observatory REMARKS: Testhole No. 2 DEPTH: 82 84 feet CUMMULATIVE % RETAINED REMARKS % RET. WT. RET. 0.0 10 1.4 25 3.4 35 4.8 45 6.2 80 11.0 190 26.0 365 50.0 550 75.3 87.7 640 690 94.5 720 98.6 730 100.0



## 200 Pan

U.S. SIEVE

NO.

0.265

4

6

8

12

16

20

30

40

60

100

1/2 Inch

Total Wr: 730.0

| SIEVE ANAL        | YSIS      | BPO JECT.  | Iominian Dadia A   | Alex Observation                                                                                                                                                                                                                            |                                        |     |
|-------------------|-----------|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|
|                   |           | FROJECT.   | 2011111011 Radio A | stro. Observatory                                                                                                                                                                                                                           | -                                      |     |
|                   |           | REMARKS:   | esthole No. 2      |                                                                                                                                                                                                                                             |                                        |     |
|                   |           | DEPTH: 8   | 4 86 feet          |                                                                                                                                                                                                                                             |                                        |     |
| SIEVE OF          | PENNING   | U.S. SIEVE | CUMMULATIV         | E % RETAINED                                                                                                                                                                                                                                | REMARKS                                |     |
| INCH              | 1000ths"  | NO.        | WT. RET.           | % RET.                                                                                                                                                                                                                                      |                                        |     |
|                   |           | 1/2 Inch   | <u></u>            | <u> </u>                                                                                                                                                                                                                                    |                                        |     |
| 0.265             | 265       | 0.265      |                    | 0.0                                                                                                                                                                                                                                         |                                        |     |
| 0.187             | 187       | 4          | 25                 | 4.4                                                                                                                                                                                                                                         |                                        |     |
| 0.132             | 132       | 6          | 35                 | 6.2                                                                                                                                                                                                                                         |                                        |     |
| 0.0937            | 93.7      | 8          | 45                 | 8.0                                                                                                                                                                                                                                         |                                        |     |
| 0.0661            | 66.1      | 12         | 60                 | 10.6                                                                                                                                                                                                                                        |                                        |     |
| 0.0469            | 46.9      | 16         | 75                 | 13.3                                                                                                                                                                                                                                        |                                        |     |
| 0.0331            | 33.1      | 20         | 112                | 19.8                                                                                                                                                                                                                                        |                                        |     |
| 0.0234            | 23.4      | 30         | 180                | 31.9                                                                                                                                                                                                                                        | ······································ |     |
| 0.0105            | 9.9       | 60         | 320                | 50.0<br>95.9                                                                                                                                                                                                                                |                                        |     |
| 0.0059            | 5.9       | 100        | <u>485</u><br>540  | 00.0<br>95.6                                                                                                                                                                                                                                |                                        |     |
| 0.0029            | 2.9       | 200        | 560                | 99.1                                                                                                                                                                                                                                        |                                        |     |
|                   |           | Pan        | 565                | 100.0                                                                                                                                                                                                                                       | ······································ |     |
|                   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
|                   |           | Total Wt:  | 565.0              |                                                                                                                                                                                                                                             |                                        |     |
|                   | <u></u>   | <u></u>    | <u></u>            | <u>in de la construcción de la constru<br/>Construcción de la construcción de l</u> | <u></u>                                |     |
|                   |           |            | SIEVE ANAI         | LYSIS PLOT                                                                                                                                                                                                                                  |                                        |     |
|                   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| 100               |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| i - <sup>90</sup> | 0.0       |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| 80 <b>a</b>       | 0.0       |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| <b>e</b> 70       | ).0 ===== |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| ě <sub>60</sub>   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
|                   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
|                   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
|                   | J.0       |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| E E 30            | 0.0       |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| j <b>h</b> 20     | 0.0       |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| 10                | 0.0       |            |                    |                                                                                                                                                                                                                                             |                                        |     |
| ) c               | ).0 🗮     |            |                    |                                                                                                                                                                                                                                             |                                        |     |
|                   | 0         | 50         | 100                | 150                                                                                                                                                                                                                                         | 200                                    | 250 |
|                   |           |            | Sieve Opennin      | in Thousandthe                                                                                                                                                                                                                              | 200                                    | 200 |
|                   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |
|                   |           |            |                    |                                                                                                                                                                                                                                             |                                        |     |



- 1) Safety Factor
- 70 Percent of available drawdown (ie 0.7)
- 2) Total Available Drawdown in Well (top of screen minum static water level

Sa := 66.7ft

3) Aquifer Test Rate

$$Q := \frac{245 \text{gal}}{\min}$$

4) Drawdown in Pumped Well at 100 minutes

 $S_{100} := 22.18 ft$ 

5) Drawdown per log cycle

dS := 0.1ft

The 20 year safe yield of the well is given by the following:

$$Q_{20} := \frac{(0.7 \cdot Sa \cdot Q)}{(S_{100} + 5dS)}$$
$$Q_{20} = 504.367 \frac{gal}{min}$$