Search Results

1 results returned.
To copy the URL of a document, Right Click on the document title, select "Copy Shortcut/Copy Link", then paste as needed. Only documents available to the public have this feature enabled.
Title Sort descending Sort ascending Primary
Author Sort ascending Sort descending
Date Sort ascending Sort descending
Abstract / Details
View
Hard
copy
Early-seral forest stands and their relationship to wildlife populations and ecosystem stability. Stromgren, Eric J.
2010
A
D
Abstract: Biodiversity across landscapes is more than simply a species count; it also includes the range of habitats and ecological processes (?diversity?) present. If these processes are interrupted, an integral component of the ecosystem is lost, leading to more visible consequences such as species declines or extirpations. We are entering (or already in) a bottleneck, with regards to the ecological processes across much of our ?working forest?. Once beetle-salvage operations taper off, sources of wood will become even more constrained, leading to increasing pressure on the stands of mature forest remaining on a landscape dominated by younger stands. Effective planning for biodiversity on these landscapes requires understanding how stands of different age-classes contribute to the ?functioning? of the forest ecosystem, and when mature stands can be harvested as younger stands start to support ?mature forest? species. However, far more work has been done on the opposite end of the spectrum, namely understanding the importance of ?old growth? forest stands. Important questions that now need addressing are: What are the implications of dwindling stands of mature forest, in terms of ecological processes and wildlife resilience? When do younger stands begin to play a ?mature role?, and can we understand the features that contribute to this change? Science-based planning (or ?ecosystem-based management?) for the harvest of mature timber will need to consider the impact of an increasing dominance of younger stands on the landscape. The overarching goal of the proposed study is to facilitate this planning process, by providing greater insight into how the young-to-mature stand representation influences the wildlife component of ecosystems. The study will occur in the Interior Douglas-fir (IDF) ecosystem of BC. Extensive harvesting has occurred in the IDF in the past. But, with a declining timber supply from lower-elevation sites, wood flow from the IDF will become increasingly critical in sustaining the forest industry. We will focus on how the representation of younger forest stands (and their habitat attributes) influence an important component of the wildlife community. We will collect detailed information on two ?keystone? prey species strongly tied to mature and young forest habitats, respectively, and this in turn will reveal the links between their predators to the habitat types. We will use red squirrels (Tamiasciurus hudsonicus) and yellow-pine chipmunks (Tamias amoenus) as focal prey species, for several reasons. One, both animals are important in the diet of forest predators [1]. In particular, the goshawk (Accipiter gentilis) predates heavily on squirrels [2,3]. A recent American study showed squirrel abundance was the best variable for explaining reproductive output by these birds [4], and Harrower [5] has routinely observed squirrels being delivered to goshawk nests in the BC interior. Squirrels also figure in the diet of marten and other smaller mustelids such as ermine [6,7], and it has been argued that we need to re-examine the widely-held notion that these predators are primarily dependent on voles and mice, as larger prey such as squirrels provide higher caloric intake [8]. Mustelids, and to a lesser extent raptors, also prey heavily on chipmunks [6,9]. Overall, these two prey species represent integral parts of the vertebrate food web within the forests of BC. Other reasons for using these animals are (a) they are tractable and conducive to study [1] and (b) they represent contrasting associations: squirrels tend to be found in more mature stands of forest [10], whereas chipmunks are tied to well-developed understories in younger, open forests [11,12]. The transition of young stands into ?mature forest? therefore reflects mirror-image changes in habitat suitability to these two animals, and consequently, in prey availability for their predators. It is this ?transition? and its implications to the wildlife commu ...
 
Stromgren, Eric J., Larsen, Karl W.. 2010. Early-seral forest stands and their relationship to wildlife populations and ecosystem stability.. Forest Investment Account (FIA) - Forest Science Program. Forest Investment Account Report. FIA2010MR267
 
Topic: FLNRORD Research Program
Keywords: Forest, Investment, Account, (FIA), British, Columbia
ISSN:  Scientific Name: 
ISBN:  English Name: 
Other Identifier: 
 
To copy the URL of a document, Right Click on the document title, select "Copy Shortcut/Copy Link", then paste as needed. Only documents available to the public have this feature enabled.

EIRS Search Options

Useful Contacts